zephyr/kernel/stack.c
Flavio Ceolin dfbe03249d kernel: stack: Making if's body a compound statement
MISRA-C rule 15.6

Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
2018-11-04 11:37:24 -05:00

176 lines
3.5 KiB
C

/*
* Copyright (c) 2010-2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief fixed-size stack object
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <debug/object_tracing_common.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <ksched.h>
#include <wait_q.h>
#include <misc/__assert.h>
#include <init.h>
#include <syscall_handler.h>
extern struct k_stack _k_stack_list_start[];
extern struct k_stack _k_stack_list_end[];
#ifdef CONFIG_OBJECT_TRACING
struct k_stack *_trace_list_k_stack;
/*
* Complete initialization of statically defined stacks.
*/
static int init_stack_module(struct device *dev)
{
ARG_UNUSED(dev);
struct k_stack *stack;
for (stack = _k_stack_list_start; stack < _k_stack_list_end; stack++) {
SYS_TRACING_OBJ_INIT(k_stack, stack);
}
return 0;
}
SYS_INIT(init_stack_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJECT_TRACING */
void k_stack_init(struct k_stack *stack, u32_t *buffer,
u32_t num_entries)
{
_waitq_init(&stack->wait_q);
stack->base = buffer;
stack->next = buffer;
stack->top = stack->base + num_entries;
SYS_TRACING_OBJ_INIT(k_stack, stack);
_k_object_init(stack);
}
s32_t _impl_k_stack_alloc_init(struct k_stack *stack, u32_t num_entries)
{
void *buffer;
s32_t ret;
buffer = z_thread_malloc(num_entries);
if (buffer != NULL) {
k_stack_init(stack, buffer, num_entries);
stack->flags = K_STACK_FLAG_ALLOC;
ret = (s32_t)0;
} else {
ret = -ENOMEM;
}
return ret;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_stack_alloc_init, stack, num_entries)
{
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(stack, K_OBJ_STACK));
Z_OOPS(Z_SYSCALL_VERIFY(num_entries > 0));
return _impl_k_stack_alloc_init((struct k_stack *)stack, num_entries);
}
#endif
void k_stack_cleanup(struct k_stack *stack)
{
__ASSERT_NO_MSG(_waitq_head(&stack->wait_q) == NULL);
if ((stack->flags & K_STACK_FLAG_ALLOC) != (u8_t)0) {
k_free(stack->base);
stack->base = NULL;
stack->flags &= ~K_STACK_FLAG_ALLOC;
}
}
void _impl_k_stack_push(struct k_stack *stack, u32_t data)
{
struct k_thread *first_pending_thread;
u32_t key;
__ASSERT(stack->next != stack->top, "stack is full");
key = irq_lock();
first_pending_thread = _unpend_first_thread(&stack->wait_q);
if (first_pending_thread != NULL) {
_ready_thread(first_pending_thread);
_set_thread_return_value_with_data(first_pending_thread,
0, (void *)data);
_reschedule(key);
return;
} else {
*(stack->next) = data;
stack->next++;
irq_unlock(key);
}
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_stack_push, stack_p, data)
{
struct k_stack *stack = (struct k_stack *)stack_p;
Z_OOPS(Z_SYSCALL_OBJ(stack, K_OBJ_STACK));
Z_OOPS(Z_SYSCALL_VERIFY_MSG(stack->next != stack->top,
"stack is full"));
_impl_k_stack_push(stack, data);
return 0;
}
#endif
int _impl_k_stack_pop(struct k_stack *stack, u32_t *data, s32_t timeout)
{
u32_t key;
int result;
key = irq_lock();
if (likely(stack->next > stack->base)) {
stack->next--;
*data = *(stack->next);
irq_unlock(key);
return 0;
}
if (timeout == K_NO_WAIT) {
irq_unlock(key);
return -EBUSY;
}
result = _pend_current_thread(key, &stack->wait_q, timeout);
if (result == -EAGAIN) {
return -EAGAIN;
}
*data = (u32_t)_current->base.swap_data;
return 0;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_stack_pop, stack, data, timeout)
{
Z_OOPS(Z_SYSCALL_OBJ(stack, K_OBJ_STACK));
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(data, sizeof(u32_t)));
return _impl_k_stack_pop((struct k_stack *)stack, (u32_t *)data,
timeout);
}
#endif