c13930791d
Replace rng to dev_data->rng in call to LL_RNG_SetHealthConfig. Signed-off-by: John Johnson <john.filip.johnson@gmail.com>
758 lines
19 KiB
C
758 lines
19 KiB
C
/*
|
|
* Copyright (c) 2017 Erwin Rol <erwin@erwinrol.com>
|
|
* Copyright (c) 2018 Nordic Semiconductor ASA
|
|
* Copyright (c) 2017 Exati Tecnologia Ltda.
|
|
* Copyright (c) 2020 STMicroelectronics.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT st_stm32_rng
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/drivers/entropy.h>
|
|
#include <zephyr/random/random.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/sys/__assert.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <errno.h>
|
|
#include <soc.h>
|
|
#include <zephyr/pm/policy.h>
|
|
#include <stm32_ll_bus.h>
|
|
#include <stm32_ll_rcc.h>
|
|
#include <stm32_ll_rng.h>
|
|
#include <stm32_ll_pka.h>
|
|
#include <stm32_ll_system.h>
|
|
#include <zephyr/sys/printk.h>
|
|
#include <zephyr/pm/device.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
|
|
#include <zephyr/irq.h>
|
|
#include <zephyr/sys/barrier.h>
|
|
#include "stm32_hsem.h"
|
|
|
|
#define IRQN DT_INST_IRQN(0)
|
|
#define IRQ_PRIO DT_INST_IRQ(0, priority)
|
|
|
|
#if defined(RNG_CR_CONDRST)
|
|
#define STM32_CONDRST_SUPPORT
|
|
#endif
|
|
|
|
/*
|
|
* This driver need to take into account all STM32 family:
|
|
* - simple rng without hardware fifo and no DMA.
|
|
* - Variable delay between two consecutive random numbers
|
|
* (depending on family and clock settings)
|
|
*
|
|
*
|
|
* Due to the first byte in a stream of bytes being more costly on
|
|
* some platforms a "water system" inspired algorithm is used to
|
|
* amortize the cost of the first byte.
|
|
*
|
|
* The algorithm will delay generation of entropy until the amount of
|
|
* bytes goes below THRESHOLD, at which point it will generate entropy
|
|
* until the BUF_LEN limit is reached.
|
|
*
|
|
* The entropy level is checked at the end of every consumption of
|
|
* entropy.
|
|
*
|
|
*/
|
|
|
|
struct rng_pool {
|
|
uint8_t first_alloc;
|
|
uint8_t first_read;
|
|
uint8_t last;
|
|
uint8_t mask;
|
|
uint8_t threshold;
|
|
uint8_t buffer[0];
|
|
};
|
|
|
|
#define RNG_POOL_DEFINE(name, len) uint8_t name[sizeof(struct rng_pool) + (len)]
|
|
|
|
BUILD_ASSERT((CONFIG_ENTROPY_STM32_ISR_POOL_SIZE &
|
|
(CONFIG_ENTROPY_STM32_ISR_POOL_SIZE - 1)) == 0,
|
|
"The CONFIG_ENTROPY_STM32_ISR_POOL_SIZE must be a power of 2!");
|
|
|
|
BUILD_ASSERT((CONFIG_ENTROPY_STM32_THR_POOL_SIZE &
|
|
(CONFIG_ENTROPY_STM32_THR_POOL_SIZE - 1)) == 0,
|
|
"The CONFIG_ENTROPY_STM32_THR_POOL_SIZE must be a power of 2!");
|
|
|
|
struct entropy_stm32_rng_dev_cfg {
|
|
struct stm32_pclken *pclken;
|
|
};
|
|
|
|
struct entropy_stm32_rng_dev_data {
|
|
RNG_TypeDef *rng;
|
|
const struct device *clock;
|
|
struct k_sem sem_lock;
|
|
struct k_sem sem_sync;
|
|
struct k_work filling_work;
|
|
bool filling_pools;
|
|
|
|
RNG_POOL_DEFINE(isr, CONFIG_ENTROPY_STM32_ISR_POOL_SIZE);
|
|
RNG_POOL_DEFINE(thr, CONFIG_ENTROPY_STM32_THR_POOL_SIZE);
|
|
};
|
|
|
|
static struct stm32_pclken pclken_rng[] = STM32_DT_INST_CLOCKS(0);
|
|
|
|
static struct entropy_stm32_rng_dev_cfg entropy_stm32_rng_config = {
|
|
.pclken = pclken_rng
|
|
};
|
|
|
|
static struct entropy_stm32_rng_dev_data entropy_stm32_rng_data = {
|
|
.rng = (RNG_TypeDef *)DT_INST_REG_ADDR(0),
|
|
};
|
|
|
|
static int entropy_stm32_suspend(void)
|
|
{
|
|
const struct device *dev = DEVICE_DT_GET(DT_DRV_INST(0));
|
|
struct entropy_stm32_rng_dev_data *dev_data = dev->data;
|
|
const struct entropy_stm32_rng_dev_cfg *dev_cfg = dev->config;
|
|
RNG_TypeDef *rng = dev_data->rng;
|
|
int res;
|
|
|
|
LL_RNG_Disable(rng);
|
|
|
|
#ifdef CONFIG_SOC_SERIES_STM32WBAX
|
|
uint32_t wait_cycles, rng_rate;
|
|
|
|
if (LL_PKA_IsEnabled(PKA)) {
|
|
return 0;
|
|
}
|
|
|
|
if (clock_control_get_rate(dev_data->clock,
|
|
(clock_control_subsys_t) &dev_cfg->pclken[0],
|
|
&rng_rate) < 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
wait_cycles = SystemCoreClock / rng_rate * 2;
|
|
|
|
for (int i = wait_cycles; i >= 0; i--) {
|
|
}
|
|
#endif /* CONFIG_SOC_SERIES_STM32WBAX */
|
|
|
|
res = clock_control_off(dev_data->clock,
|
|
(clock_control_subsys_t)&dev_cfg->pclken[0]);
|
|
|
|
return res;
|
|
}
|
|
|
|
static int entropy_stm32_resume(void)
|
|
{
|
|
const struct device *dev = DEVICE_DT_GET(DT_DRV_INST(0));
|
|
struct entropy_stm32_rng_dev_data *dev_data = dev->data;
|
|
const struct entropy_stm32_rng_dev_cfg *dev_cfg = dev->config;
|
|
RNG_TypeDef *rng = dev_data->rng;
|
|
int res;
|
|
|
|
res = clock_control_on(dev_data->clock,
|
|
(clock_control_subsys_t)&dev_cfg->pclken[0]);
|
|
LL_RNG_Enable(rng);
|
|
LL_RNG_EnableIT(rng);
|
|
|
|
return res;
|
|
}
|
|
|
|
static void configure_rng(void)
|
|
{
|
|
RNG_TypeDef *rng = entropy_stm32_rng_data.rng;
|
|
|
|
#ifdef STM32_CONDRST_SUPPORT
|
|
uint32_t desired_nist_cfg = DT_INST_PROP_OR(0, nist_config, 0U);
|
|
uint32_t desired_htcr = DT_INST_PROP_OR(0, health_test_config, 0U);
|
|
uint32_t cur_nist_cfg = 0U;
|
|
uint32_t cur_htcr = 0U;
|
|
|
|
#if DT_INST_NODE_HAS_PROP(0, nist_config)
|
|
/*
|
|
* Configure the RNG_CR in compliance with the NIST SP800.
|
|
* The nist-config is direclty copied from the DTS.
|
|
* The RNG clock must be 48MHz else the clock DIV is not adpated.
|
|
* The RNG_CR_CONDRST is set to 1 at the same time the RNG_CR is written
|
|
*/
|
|
cur_nist_cfg = READ_BIT(rng->CR,
|
|
(RNG_CR_NISTC | RNG_CR_CLKDIV | RNG_CR_RNG_CONFIG1 |
|
|
RNG_CR_RNG_CONFIG2 | RNG_CR_RNG_CONFIG3
|
|
#if defined(RNG_CR_ARDIS)
|
|
| RNG_CR_ARDIS
|
|
/* For STM32U5 series, the ARDIS bit7 is considered in the nist-config */
|
|
#endif /* RNG_CR_ARDIS */
|
|
));
|
|
#endif /* nist_config */
|
|
|
|
#if DT_INST_NODE_HAS_PROP(0, health_test_config)
|
|
cur_htcr = LL_RNG_GetHealthConfig(rng);
|
|
#endif /* health_test_config */
|
|
|
|
if (cur_nist_cfg != desired_nist_cfg || cur_htcr != desired_htcr) {
|
|
MODIFY_REG(rng->CR, cur_nist_cfg, (desired_nist_cfg | RNG_CR_CONDRST));
|
|
|
|
#if DT_INST_NODE_HAS_PROP(0, health_test_config)
|
|
#if DT_INST_NODE_HAS_PROP(0, health_test_magic)
|
|
LL_RNG_SetHealthConfig(rng, DT_INST_PROP(0, health_test_magic));
|
|
#endif /* health_test_magic */
|
|
LL_RNG_SetHealthConfig(rng, desired_htcr);
|
|
#endif /* health_test_config */
|
|
|
|
LL_RNG_DisableCondReset(rng);
|
|
/* Wait for conditioning reset process to be completed */
|
|
while (LL_RNG_IsEnabledCondReset(rng) == 1) {
|
|
}
|
|
}
|
|
#endif /* STM32_CONDRST_SUPPORT */
|
|
|
|
LL_RNG_Enable(rng);
|
|
LL_RNG_EnableIT(rng);
|
|
}
|
|
|
|
static void acquire_rng(void)
|
|
{
|
|
entropy_stm32_resume();
|
|
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
|
|
/* Lock the RNG to prevent concurrent access */
|
|
z_stm32_hsem_lock(CFG_HW_RNG_SEMID, HSEM_LOCK_WAIT_FOREVER);
|
|
/* RNG configuration could have been changed by the other core */
|
|
configure_rng();
|
|
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
|
|
}
|
|
|
|
static void release_rng(void)
|
|
{
|
|
entropy_stm32_suspend();
|
|
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
|
|
z_stm32_hsem_unlock(CFG_HW_RNG_SEMID);
|
|
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
|
|
}
|
|
|
|
static int entropy_stm32_got_error(RNG_TypeDef *rng)
|
|
{
|
|
__ASSERT_NO_MSG(rng != NULL);
|
|
|
|
if (LL_RNG_IsActiveFlag_CECS(rng)) {
|
|
return 1;
|
|
}
|
|
|
|
if (LL_RNG_IsActiveFlag_SEIS(rng)) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(STM32_CONDRST_SUPPORT)
|
|
/* SOCS w/ soft-reset support: execute the reset */
|
|
static int recover_seed_error(RNG_TypeDef *rng)
|
|
{
|
|
uint32_t count_timeout = 0;
|
|
|
|
LL_RNG_EnableCondReset(rng);
|
|
LL_RNG_DisableCondReset(rng);
|
|
/* When reset process is done cond reset bit is read 0
|
|
* This typically takes: 2 AHB clock cycles + 2 RNG clock cycles.
|
|
*/
|
|
|
|
while (LL_RNG_IsEnabledCondReset(rng) ||
|
|
LL_RNG_IsActiveFlag_SEIS(rng) ||
|
|
LL_RNG_IsActiveFlag_SECS(rng)) {
|
|
count_timeout++;
|
|
if (count_timeout == 10) {
|
|
return -ETIMEDOUT;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else /* !STM32_CONDRST_SUPPORT */
|
|
/* SOCS w/o soft-reset support: flush pipeline */
|
|
static int recover_seed_error(RNG_TypeDef *rng)
|
|
{
|
|
LL_RNG_ClearFlag_SEIS(rng);
|
|
|
|
for (int i = 0; i < 12; ++i) {
|
|
LL_RNG_ReadRandData32(rng);
|
|
}
|
|
|
|
if (LL_RNG_IsActiveFlag_SEIS(rng) != 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* !STM32_CONDRST_SUPPORT */
|
|
|
|
static int random_byte_get(void)
|
|
{
|
|
int retval = -EAGAIN;
|
|
unsigned int key;
|
|
RNG_TypeDef *rng = entropy_stm32_rng_data.rng;
|
|
|
|
key = irq_lock();
|
|
|
|
if (IS_ENABLED(CONFIG_ENTROPY_STM32_CLK_CHECK) && !k_is_pre_kernel()) {
|
|
/* CECS bit signals that a clock configuration issue is detected,
|
|
* which may lead to generation of non truly random data.
|
|
*/
|
|
__ASSERT(LL_RNG_IsActiveFlag_CECS(rng) == 0,
|
|
"CECS = 1: RNG domain clock is too slow.\n"
|
|
"\tSee ref man and update target clock configuration.");
|
|
}
|
|
|
|
if (LL_RNG_IsActiveFlag_SEIS(rng) && (recover_seed_error(rng) < 0)) {
|
|
retval = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if ((LL_RNG_IsActiveFlag_DRDY(rng) == 1)) {
|
|
if (entropy_stm32_got_error(rng)) {
|
|
retval = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
retval = LL_RNG_ReadRandData32(rng);
|
|
if (retval == 0) {
|
|
/* A seed error could have occurred between RNG_SR
|
|
* polling and RND_DR output reading.
|
|
*/
|
|
retval = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
retval &= 0xFF;
|
|
}
|
|
|
|
out:
|
|
|
|
irq_unlock(key);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static uint16_t generate_from_isr(uint8_t *buf, uint16_t len)
|
|
{
|
|
uint16_t remaining_len = len;
|
|
|
|
__ASSERT_NO_MSG(!irq_is_enabled(IRQN));
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
|
|
__ASSERT_NO_MSG(z_stm32_hsem_is_owned(CFG_HW_RNG_SEMID));
|
|
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
|
|
|
|
/* do not proceed if a Seed error occurred */
|
|
if (LL_RNG_IsActiveFlag_SECS(entropy_stm32_rng_data.rng) ||
|
|
LL_RNG_IsActiveFlag_SEIS(entropy_stm32_rng_data.rng)) {
|
|
|
|
(void)random_byte_get(); /* this will recover the error */
|
|
|
|
return 0; /* return cnt is null : no random data available */
|
|
}
|
|
|
|
/* Clear NVIC pending bit. This ensures that a subsequent
|
|
* RNG event will set the Cortex-M single-bit event register
|
|
* to 1 (the bit is set when NVIC pending IRQ status is
|
|
* changed from 0 to 1)
|
|
*/
|
|
NVIC_ClearPendingIRQ(IRQN);
|
|
|
|
do {
|
|
int byte;
|
|
|
|
while (LL_RNG_IsActiveFlag_DRDY(
|
|
entropy_stm32_rng_data.rng) != 1) {
|
|
/*
|
|
* To guarantee waking up from the event, the
|
|
* SEV-On-Pend feature must be enabled (enabled
|
|
* during ARCH initialization).
|
|
*
|
|
* DSB is recommended by spec before WFE (to
|
|
* guarantee completion of memory transactions)
|
|
*/
|
|
barrier_dsync_fence_full();
|
|
__WFE();
|
|
__SEV();
|
|
__WFE();
|
|
}
|
|
|
|
byte = random_byte_get();
|
|
NVIC_ClearPendingIRQ(IRQN);
|
|
|
|
if (byte < 0) {
|
|
continue;
|
|
}
|
|
|
|
buf[--remaining_len] = byte;
|
|
} while (remaining_len);
|
|
|
|
return len;
|
|
}
|
|
|
|
static int start_pool_filling(bool wait)
|
|
{
|
|
unsigned int key;
|
|
bool already_filling;
|
|
|
|
key = irq_lock();
|
|
#if defined(CONFIG_SOC_SERIES_STM32WBX) || defined(CONFIG_STM32H7_DUAL_CORE)
|
|
/* In non-blocking mode, return immediately if the RNG is not available */
|
|
if (!wait && z_stm32_hsem_try_lock(CFG_HW_RNG_SEMID) != 0) {
|
|
irq_unlock(key);
|
|
return -EAGAIN;
|
|
}
|
|
#else
|
|
ARG_UNUSED(wait);
|
|
#endif /* CONFIG_SOC_SERIES_STM32WBX || CONFIG_STM32H7_DUAL_CORE */
|
|
|
|
already_filling = entropy_stm32_rng_data.filling_pools;
|
|
entropy_stm32_rng_data.filling_pools = true;
|
|
irq_unlock(key);
|
|
|
|
if (unlikely(already_filling)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Prevent the clocks to be stopped during the duration the rng pool is
|
|
* being populated. The ISR will release the constraint again when the
|
|
* rng pool is filled.
|
|
*/
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
|
|
}
|
|
|
|
acquire_rng();
|
|
irq_enable(IRQN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pool_filling_work_handler(struct k_work *work)
|
|
{
|
|
if (start_pool_filling(false) != 0) {
|
|
/* RNG could not be acquired, try again */
|
|
k_work_submit(work);
|
|
}
|
|
}
|
|
|
|
static uint16_t rng_pool_get(struct rng_pool *rngp, uint8_t *buf,
|
|
uint16_t len)
|
|
{
|
|
uint32_t last = rngp->last;
|
|
uint32_t mask = rngp->mask;
|
|
uint8_t *dst = buf;
|
|
uint32_t first, available;
|
|
uint32_t other_read_in_progress;
|
|
unsigned int key;
|
|
|
|
key = irq_lock();
|
|
first = rngp->first_alloc;
|
|
|
|
/*
|
|
* The other_read_in_progress is non-zero if rngp->first_read != first,
|
|
* which means that lower-priority code (which was interrupted by this
|
|
* call) already allocated area for read.
|
|
*/
|
|
other_read_in_progress = (rngp->first_read ^ first);
|
|
|
|
available = (last - first) & mask;
|
|
if (available < len) {
|
|
len = available;
|
|
}
|
|
|
|
/*
|
|
* Move alloc index forward to signal, that part of the buffer is
|
|
* now reserved for this call.
|
|
*/
|
|
rngp->first_alloc = (first + len) & mask;
|
|
irq_unlock(key);
|
|
|
|
while (likely(len--)) {
|
|
*dst++ = rngp->buffer[first];
|
|
first = (first + 1) & mask;
|
|
}
|
|
|
|
/*
|
|
* If this call is the last one accessing the pool, move read index
|
|
* to signal that all allocated regions are now read and could be
|
|
* overwritten.
|
|
*/
|
|
if (likely(!other_read_in_progress)) {
|
|
key = irq_lock();
|
|
rngp->first_read = rngp->first_alloc;
|
|
irq_unlock(key);
|
|
}
|
|
|
|
len = dst - buf;
|
|
available = available - len;
|
|
if (available <= rngp->threshold) {
|
|
/*
|
|
* Avoid starting pool filling from ISR as it might require
|
|
* blocking if RNG is not available and a race condition could
|
|
* also occur if this ISR has interrupted the RNG ISR.
|
|
*/
|
|
if (k_is_in_isr()) {
|
|
k_work_submit(&entropy_stm32_rng_data.filling_work);
|
|
} else {
|
|
start_pool_filling(true);
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static int rng_pool_put(struct rng_pool *rngp, uint8_t byte)
|
|
{
|
|
uint8_t first = rngp->first_read;
|
|
uint8_t last = rngp->last;
|
|
uint8_t mask = rngp->mask;
|
|
|
|
/* Signal error if the pool is full. */
|
|
if (((last - first) & mask) == mask) {
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
rngp->buffer[last] = byte;
|
|
rngp->last = (last + 1) & mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rng_pool_init(struct rng_pool *rngp, uint16_t size,
|
|
uint8_t threshold)
|
|
{
|
|
rngp->first_alloc = 0U;
|
|
rngp->first_read = 0U;
|
|
rngp->last = 0U;
|
|
rngp->mask = size - 1;
|
|
rngp->threshold = threshold;
|
|
}
|
|
|
|
static void stm32_rng_isr(const void *arg)
|
|
{
|
|
int byte, ret;
|
|
|
|
ARG_UNUSED(arg);
|
|
|
|
byte = random_byte_get();
|
|
if (byte < 0) {
|
|
return;
|
|
}
|
|
|
|
ret = rng_pool_put((struct rng_pool *)(entropy_stm32_rng_data.isr),
|
|
byte);
|
|
if (ret < 0) {
|
|
ret = rng_pool_put(
|
|
(struct rng_pool *)(entropy_stm32_rng_data.thr),
|
|
byte);
|
|
if (ret < 0) {
|
|
irq_disable(IRQN);
|
|
release_rng();
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
|
|
}
|
|
entropy_stm32_rng_data.filling_pools = false;
|
|
}
|
|
|
|
k_sem_give(&entropy_stm32_rng_data.sem_sync);
|
|
}
|
|
}
|
|
|
|
static int entropy_stm32_rng_get_entropy(const struct device *dev,
|
|
uint8_t *buf,
|
|
uint16_t len)
|
|
{
|
|
/* Check if this API is called on correct driver instance. */
|
|
__ASSERT_NO_MSG(&entropy_stm32_rng_data == dev->data);
|
|
|
|
while (len) {
|
|
uint16_t bytes;
|
|
|
|
k_sem_take(&entropy_stm32_rng_data.sem_lock, K_FOREVER);
|
|
bytes = rng_pool_get(
|
|
(struct rng_pool *)(entropy_stm32_rng_data.thr),
|
|
buf, len);
|
|
|
|
if (bytes == 0U) {
|
|
/* Pool is empty: Sleep until next interrupt. */
|
|
k_sem_take(&entropy_stm32_rng_data.sem_sync, K_FOREVER);
|
|
}
|
|
|
|
k_sem_give(&entropy_stm32_rng_data.sem_lock);
|
|
|
|
len -= bytes;
|
|
buf += bytes;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int entropy_stm32_rng_get_entropy_isr(const struct device *dev,
|
|
uint8_t *buf,
|
|
uint16_t len,
|
|
uint32_t flags)
|
|
{
|
|
uint16_t cnt = len;
|
|
|
|
/* Check if this API is called on correct driver instance. */
|
|
__ASSERT_NO_MSG(&entropy_stm32_rng_data == dev->data);
|
|
|
|
if (likely((flags & ENTROPY_BUSYWAIT) == 0U)) {
|
|
return rng_pool_get(
|
|
(struct rng_pool *)(entropy_stm32_rng_data.isr),
|
|
buf, len);
|
|
}
|
|
|
|
if (len) {
|
|
unsigned int key;
|
|
int irq_enabled;
|
|
bool rng_already_acquired;
|
|
|
|
key = irq_lock();
|
|
irq_enabled = irq_is_enabled(IRQN);
|
|
irq_disable(IRQN);
|
|
irq_unlock(key);
|
|
|
|
/* Do not release if IRQ is enabled. RNG will be released in ISR
|
|
* when the pools are full.
|
|
*/
|
|
rng_already_acquired = z_stm32_hsem_is_owned(CFG_HW_RNG_SEMID) ||
|
|
irq_enabled;
|
|
acquire_rng();
|
|
|
|
cnt = generate_from_isr(buf, len);
|
|
|
|
/* Restore the state of the RNG lock and IRQ */
|
|
if (!rng_already_acquired) {
|
|
release_rng();
|
|
}
|
|
|
|
if (irq_enabled) {
|
|
irq_enable(IRQN);
|
|
}
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
static int entropy_stm32_rng_init(const struct device *dev)
|
|
{
|
|
struct entropy_stm32_rng_dev_data *dev_data;
|
|
const struct entropy_stm32_rng_dev_cfg *dev_cfg;
|
|
int res;
|
|
|
|
__ASSERT_NO_MSG(dev != NULL);
|
|
|
|
dev_data = dev->data;
|
|
dev_cfg = dev->config;
|
|
|
|
__ASSERT_NO_MSG(dev_data != NULL);
|
|
__ASSERT_NO_MSG(dev_cfg != NULL);
|
|
|
|
dev_data->clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
|
|
if (!device_is_ready(dev_data->clock)) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
res = clock_control_on(dev_data->clock,
|
|
(clock_control_subsys_t)&dev_cfg->pclken[0]);
|
|
__ASSERT_NO_MSG(res == 0);
|
|
|
|
/* Configure domain clock if any */
|
|
if (DT_INST_NUM_CLOCKS(0) > 1) {
|
|
res = clock_control_configure(dev_data->clock,
|
|
(clock_control_subsys_t)&dev_cfg->pclken[1],
|
|
NULL);
|
|
__ASSERT(res == 0, "Could not select RNG domain clock");
|
|
}
|
|
|
|
/* Locking semaphore initialized to 1 (unlocked) */
|
|
k_sem_init(&dev_data->sem_lock, 1, 1);
|
|
|
|
/* Synching semaphore */
|
|
k_sem_init(&dev_data->sem_sync, 0, 1);
|
|
|
|
k_work_init(&dev_data->filling_work, pool_filling_work_handler);
|
|
|
|
rng_pool_init((struct rng_pool *)(dev_data->thr),
|
|
CONFIG_ENTROPY_STM32_THR_POOL_SIZE,
|
|
CONFIG_ENTROPY_STM32_THR_THRESHOLD);
|
|
rng_pool_init((struct rng_pool *)(dev_data->isr),
|
|
CONFIG_ENTROPY_STM32_ISR_POOL_SIZE,
|
|
CONFIG_ENTROPY_STM32_ISR_THRESHOLD);
|
|
|
|
IRQ_CONNECT(IRQN, IRQ_PRIO, stm32_rng_isr, &entropy_stm32_rng_data, 0);
|
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32WBX) && !defined(CONFIG_STM32H7_DUAL_CORE)
|
|
/* For multi-core MCUs, RNG configuration is automatically performed
|
|
* after acquiring the RNG in start_pool_filling()
|
|
*/
|
|
configure_rng();
|
|
#endif /* !CONFIG_SOC_SERIES_STM32WBX && !CONFIG_STM32H7_DUAL_CORE */
|
|
|
|
start_pool_filling(true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
static int entropy_stm32_rng_pm_action(const struct device *dev,
|
|
enum pm_device_action action)
|
|
{
|
|
struct entropy_stm32_rng_dev_data *dev_data = dev->data;
|
|
|
|
int res = 0;
|
|
|
|
/* Remove warning on some platforms */
|
|
ARG_UNUSED(dev_data);
|
|
|
|
switch (action) {
|
|
case PM_DEVICE_ACTION_SUSPEND:
|
|
res = entropy_stm32_suspend();
|
|
break;
|
|
case PM_DEVICE_ACTION_RESUME:
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
#if DT_INST_NODE_HAS_PROP(0, health_test_config)
|
|
entropy_stm32_resume();
|
|
#if DT_INST_NODE_HAS_PROP(0, health_test_magic)
|
|
LL_RNG_SetHealthConfig(dev_data->rng, DT_INST_PROP(0, health_test_magic));
|
|
#endif /* health_test_magic */
|
|
if (LL_RNG_GetHealthConfig(dev_data->rng) !=
|
|
DT_INST_PROP_OR(0, health_test_config, 0U)) {
|
|
entropy_stm32_rng_init(dev);
|
|
} else if (!entropy_stm32_rng_data.filling_pools) {
|
|
/* Resume RNG only if it was suspended during filling pool */
|
|
entropy_stm32_suspend();
|
|
}
|
|
#endif /* health_test_config */
|
|
} else {
|
|
/* Resume RNG only if it was suspended during filling pool */
|
|
if (entropy_stm32_rng_data.filling_pools) {
|
|
res = entropy_stm32_resume();
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
#endif /* CONFIG_PM_DEVICE */
|
|
|
|
static const struct entropy_driver_api entropy_stm32_rng_api = {
|
|
.get_entropy = entropy_stm32_rng_get_entropy,
|
|
.get_entropy_isr = entropy_stm32_rng_get_entropy_isr
|
|
};
|
|
|
|
PM_DEVICE_DT_INST_DEFINE(0, entropy_stm32_rng_pm_action);
|
|
|
|
DEVICE_DT_INST_DEFINE(0,
|
|
entropy_stm32_rng_init,
|
|
PM_DEVICE_DT_INST_GET(0),
|
|
&entropy_stm32_rng_data, &entropy_stm32_rng_config,
|
|
PRE_KERNEL_1, CONFIG_ENTROPY_INIT_PRIORITY,
|
|
&entropy_stm32_rng_api);
|