zephyr/drivers/serial/uart_ns16550.c
Maximilian Bachmann 3c8e98cb39 drivers/pcie: Change pcie_get_mbar() to return size and flags
currently pcie_get_mbar only returns the physical address.
This changes the function to return the size of the mbar and
the flags (IO Bar vs MEM BAR).

Signed-off-by: Maximilian Bachmann <m.bachmann@acontis.com>
2020-11-20 09:36:22 +02:00

982 lines
25 KiB
C

/* ns16550.c - NS16550D serial driver */
#define DT_DRV_COMPAT ns16550
/*
* Copyright (c) 2010, 2012-2015 Wind River Systems, Inc.
* Copyright (c) 2020 Intel Corp.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief NS16550 Serial Driver
*
* This is the driver for the Intel NS16550 UART Chip used on the PC 386.
* It uses the SCCs in asynchronous mode only.
*
* Before individual UART port can be used, uart_ns16550_port_init() has to be
* called to setup the port.
*
* - the following macro for the number of bytes between register addresses:
*
* UART_REG_ADDR_INTERVAL
*/
#include <errno.h>
#include <kernel.h>
#include <arch/cpu.h>
#include <zephyr/types.h>
#include <soc.h>
#include <init.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <drivers/uart.h>
#include <sys/sys_io.h>
#include <spinlock.h>
#include "uart_ns16550.h"
/*
* If PCP is set for any of the ports, enable support.
* Ditto for DLF and PCI(e).
*/
#if DT_INST_NODE_HAS_PROP(0, pcp) || \
DT_INST_NODE_HAS_PROP(1, pcp) || \
DT_INST_NODE_HAS_PROP(2, pcp) || \
DT_INST_NODE_HAS_PROP(3, pcp)
#define UART_NS16550_PCP_ENABLED
#endif
#if DT_INST_NODE_HAS_PROP(0, dlf) || \
DT_INST_NODE_HAS_PROP(1, dlf) || \
DT_INST_NODE_HAS_PROP(2, dlf) || \
DT_INST_NODE_HAS_PROP(3, dlf)
#define UART_NS16550_DLF_ENABLED
#endif
#if DT_INST_PROP(0, pcie) || \
DT_INST_PROP(1, pcie) || \
DT_INST_PROP(2, pcie) || \
DT_INST_PROP(3, pcie)
BUILD_ASSERT(IS_ENABLED(CONFIG_PCIE), "NS16550(s) in DT need CONFIG_PCIE");
#define UART_NS16550_PCIE_ENABLED
#include <drivers/pcie/pcie.h>
#endif
/* register definitions */
#define REG_THR 0x00 /* Transmitter holding reg. */
#define REG_RDR 0x00 /* Receiver data reg. */
#define REG_BRDL 0x00 /* Baud rate divisor (LSB) */
#define REG_BRDH 0x01 /* Baud rate divisor (MSB) */
#define REG_IER 0x01 /* Interrupt enable reg. */
#define REG_IIR 0x02 /* Interrupt ID reg. */
#define REG_FCR 0x02 /* FIFO control reg. */
#define REG_LCR 0x03 /* Line control reg. */
#define REG_MDC 0x04 /* Modem control reg. */
#define REG_LSR 0x05 /* Line status reg. */
#define REG_MSR 0x06 /* Modem status reg. */
#define REG_DLF 0xC0 /* Divisor Latch Fraction */
#define REG_PCP 0x200 /* PRV_CLOCK_PARAMS (Apollo Lake) */
/* equates for interrupt enable register */
#define IER_RXRDY 0x01 /* receiver data ready */
#define IER_TBE 0x02 /* transmit bit enable */
#define IER_LSR 0x04 /* line status interrupts */
#define IER_MSI 0x08 /* modem status interrupts */
/* equates for interrupt identification register */
#define IIR_MSTAT 0x00 /* modem status interrupt */
#define IIR_NIP 0x01 /* no interrupt pending */
#define IIR_THRE 0x02 /* transmit holding register empty interrupt */
#define IIR_RBRF 0x04 /* receiver buffer register full interrupt */
#define IIR_LS 0x06 /* receiver line status interrupt */
#define IIR_MASK 0x07 /* interrupt id bits mask */
#define IIR_ID 0x06 /* interrupt ID mask without NIP */
/* equates for FIFO control register */
#define FCR_FIFO 0x01 /* enable XMIT and RCVR FIFO */
#define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */
#define FCR_XMITCLR 0x04 /* clear XMIT FIFO */
/* equates for Apollo Lake clock control register (PRV_CLOCK_PARAMS) */
#define PCP_UPDATE 0x80000000 /* update clock */
#define PCP_EN 0x00000001 /* enable clock output */
/*
* Per PC16550D (Literature Number: SNLS378B):
*
* RXRDY, Mode 0: When in the 16450 Mode (FCR0 = 0) or in
* the FIFO Mode (FCR0 = 1, FCR3 = 0) and there is at least 1
* character in the RCVR FIFO or RCVR holding register, the
* RXRDY pin (29) will be low active. Once it is activated the
* RXRDY pin will go inactive when there are no more charac-
* ters in the FIFO or holding register.
*
* RXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when the
* FCR3 = 1 and the trigger level or the timeout has been
* reached, the RXRDY pin will go low active. Once it is acti-
* vated it will go inactive when there are no more characters
* in the FIFO or holding register.
*
* TXRDY, Mode 0: In the 16450 Mode (FCR0 = 0) or in the
* FIFO Mode (FCR0 = 1, FCR3 = 0) and there are no charac-
* ters in the XMIT FIFO or XMIT holding register, the TXRDY
* pin (24) will be low active. Once it is activated the TXRDY
* pin will go inactive after the first character is loaded into the
* XMIT FIFO or holding register.
*
* TXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when
* FCR3 = 1 and there are no characters in the XMIT FIFO, the
* TXRDY pin will go low active. This pin will become inactive
* when the XMIT FIFO is completely full.
*/
#define FCR_MODE0 0x00 /* set receiver in mode 0 */
#define FCR_MODE1 0x08 /* set receiver in mode 1 */
/* RCVR FIFO interrupt levels: trigger interrupt with this bytes in FIFO */
#define FCR_FIFO_1 0x00 /* 1 byte in RCVR FIFO */
#define FCR_FIFO_4 0x40 /* 4 bytes in RCVR FIFO */
#define FCR_FIFO_8 0x80 /* 8 bytes in RCVR FIFO */
#define FCR_FIFO_14 0xC0 /* 14 bytes in RCVR FIFO */
/*
* UART NS16750 supports 64 bytes FIFO, which can be enabled
* via the FCR register
*/
#define FCR_FIFO_64 0x20 /* Enable 64 bytes FIFO */
/* constants for line control register */
#define LCR_CS5 0x00 /* 5 bits data size */
#define LCR_CS6 0x01 /* 6 bits data size */
#define LCR_CS7 0x02 /* 7 bits data size */
#define LCR_CS8 0x03 /* 8 bits data size */
#define LCR_2_STB 0x04 /* 2 stop bits */
#define LCR_1_STB 0x00 /* 1 stop bit */
#define LCR_PEN 0x08 /* parity enable */
#define LCR_PDIS 0x00 /* parity disable */
#define LCR_EPS 0x10 /* even parity select */
#define LCR_SP 0x20 /* stick parity select */
#define LCR_SBRK 0x40 /* break control bit */
#define LCR_DLAB 0x80 /* divisor latch access enable */
/* constants for the modem control register */
#define MCR_DTR 0x01 /* dtr output */
#define MCR_RTS 0x02 /* rts output */
#define MCR_OUT1 0x04 /* output #1 */
#define MCR_OUT2 0x08 /* output #2 */
#define MCR_LOOP 0x10 /* loop back */
#define MCR_AFCE 0x20 /* auto flow control enable */
/* constants for line status register */
#define LSR_RXRDY 0x01 /* receiver data available */
#define LSR_OE 0x02 /* overrun error */
#define LSR_PE 0x04 /* parity error */
#define LSR_FE 0x08 /* framing error */
#define LSR_BI 0x10 /* break interrupt */
#define LSR_EOB_MASK 0x1E /* Error or Break mask */
#define LSR_THRE 0x20 /* transmit holding register empty */
#define LSR_TEMT 0x40 /* transmitter empty */
/* constants for modem status register */
#define MSR_DCTS 0x01 /* cts change */
#define MSR_DDSR 0x02 /* dsr change */
#define MSR_DRI 0x04 /* ring change */
#define MSR_DDCD 0x08 /* data carrier change */
#define MSR_CTS 0x10 /* complement of cts */
#define MSR_DSR 0x20 /* complement of dsr */
#define MSR_RI 0x40 /* complement of ring signal */
#define MSR_DCD 0x80 /* complement of dcd */
/* convenience defines */
#define DEV_CFG(dev) \
((const struct uart_ns16550_device_config * const) \
(dev)->config)
#define DEV_DATA(dev) \
((struct uart_ns16550_dev_data_t *)(dev)->data)
#define THR(dev) (get_port(dev) + REG_THR * UART_REG_ADDR_INTERVAL)
#define RDR(dev) (get_port(dev) + REG_RDR * UART_REG_ADDR_INTERVAL)
#define BRDL(dev) \
(get_port(dev) + REG_BRDL * UART_REG_ADDR_INTERVAL)
#define BRDH(dev) \
(get_port(dev) + REG_BRDH * UART_REG_ADDR_INTERVAL)
#define IER(dev) (get_port(dev) + REG_IER * UART_REG_ADDR_INTERVAL)
#define IIR(dev) (get_port(dev) + REG_IIR * UART_REG_ADDR_INTERVAL)
#define FCR(dev) (get_port(dev) + REG_FCR * UART_REG_ADDR_INTERVAL)
#define LCR(dev) (get_port(dev) + REG_LCR * UART_REG_ADDR_INTERVAL)
#define MDC(dev) (get_port(dev) + REG_MDC * UART_REG_ADDR_INTERVAL)
#define LSR(dev) (get_port(dev) + REG_LSR * UART_REG_ADDR_INTERVAL)
#define MSR(dev) (get_port(dev) + REG_MSR * UART_REG_ADDR_INTERVAL)
#define DLF(dev) (get_port(dev) + REG_DLF)
#define PCP(dev) (get_port(dev) + REG_PCP)
#define IIRC(dev) (DEV_DATA(dev)->iir_cache)
#if DT_INST_NODE_HAS_PROP(0, reg_shift)
#define UART_REG_ADDR_INTERVAL (1<<DT_INST_PROP(0, reg_shift))
#endif
#ifdef UART_NS16550_ACCESS_IOPORT
#define INBYTE(x) sys_in8(x)
#define INWORD(x) sys_in32(x)
#define OUTBYTE(x, d) sys_out8(d, x)
#define OUTWORD(x, d) sys_out32(d, x)
#ifndef UART_REG_ADDR_INTERVAL
#define UART_REG_ADDR_INTERVAL 1 /* address diff of adjacent regs. */
#endif /* UART_REG_ADDR_INTERVAL */
#else
#define INBYTE(x) sys_read8(x)
#define INWORD(x) sys_read32(x)
#define OUTBYTE(x, d) sys_write8(d, x)
#define OUTWORD(x, d) sys_write32(d, x)
#ifndef UART_REG_ADDR_INTERVAL
#define UART_REG_ADDR_INTERVAL 4 /* address diff of adjacent regs. */
#endif
#endif /* UART_NS16550_ACCESS_IOPORT */
#ifdef CONFIG_UART_NS16550_ACCESS_WORD_ONLY
#undef INBYTE
#define INBYTE(x) INWORD(x)
#undef OUTBYTE
#define OUTBYTE(x, d) OUTWORD(x, d)
#endif
/* device config */
struct uart_ns16550_device_config {
#ifndef UART_NS16550_ACCESS_IOPORT
DEVICE_MMIO_ROM;
#else
uint32_t port;
#endif
uint32_t sys_clk_freq;
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
uart_irq_config_func_t irq_config_func;
#endif
#ifdef UART_NS16550_PCP_ENABLED
uint32_t pcp;
#endif
#ifdef UART_NS16550_PCIE_ENABLED
bool pcie;
pcie_bdf_t pcie_bdf;
pcie_id_t pcie_id;
#endif
};
/** Device data structure */
struct uart_ns16550_dev_data_t {
#ifndef UART_NS16550_ACCESS_IOPORT
DEVICE_MMIO_RAM;
#endif
struct uart_config uart_config;
struct k_spinlock lock;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uint8_t iir_cache; /**< cache of IIR since it clears when read */
uart_irq_callback_user_data_t cb; /**< Callback function pointer */
void *cb_data; /**< Callback function arg */
#endif
#ifdef UART_NS16550_DLF_ENABLED
uint8_t dlf; /**< DLF value */
#endif
};
static const struct uart_driver_api uart_ns16550_driver_api;
static inline uintptr_t get_port(const struct device *dev)
{
#ifndef UART_NS16550_ACCESS_IOPORT
return DEVICE_MMIO_GET(dev);
#else
return DEV_CFG(dev)->port;
#endif
}
static void set_baud_rate(const struct device *dev, uint32_t baud_rate)
{
const struct uart_ns16550_device_config * const dev_cfg = DEV_CFG(dev);
struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev);
uint32_t divisor; /* baud rate divisor */
uint8_t lcr_cache;
if ((baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) {
/*
* calculate baud rate divisor. a variant of
* (uint32_t)(dev_cfg->sys_clk_freq / (16.0 * baud_rate) + 0.5)
*/
divisor = ((dev_cfg->sys_clk_freq + (baud_rate << 3))
/ baud_rate) >> 4;
/* set the DLAB to access the baud rate divisor registers */
lcr_cache = INBYTE(LCR(dev));
OUTBYTE(LCR(dev), LCR_DLAB | lcr_cache);
OUTBYTE(BRDL(dev), (unsigned char)(divisor & 0xff));
OUTBYTE(BRDH(dev), (unsigned char)((divisor >> 8) & 0xff));
/* restore the DLAB to access the baud rate divisor registers */
OUTBYTE(LCR(dev), lcr_cache);
dev_data->uart_config.baudrate = baud_rate;
}
}
static int uart_ns16550_configure(const struct device *dev,
const struct uart_config *cfg)
{
struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev);
const struct uart_ns16550_device_config * const dev_cfg = DEV_CFG(dev);
uint8_t mdc = 0U;
/* temp for return value if error occurs in this locked region */
int ret = 0;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
ARG_UNUSED(dev_data);
ARG_UNUSED(dev_cfg);
#ifndef UART_NS16550_ACCESS_IOPORT
#ifdef UART_NS16550_PCIE_ENABLED
if (dev_cfg->pcie) {
struct pcie_mbar mbar;
if (!pcie_probe(dev_cfg->pcie_bdf, dev_cfg->pcie_id)) {
ret = -EINVAL;
goto out;
}
pcie_get_mbar(dev_cfg->pcie_bdf, 0, &mbar);
pcie_set_cmd(dev_cfg->pcie_bdf, PCIE_CONF_CMDSTAT_MEM, true);
device_map(DEVICE_MMIO_RAM_PTR(dev), mbar.phys_addr, mbar.size,
K_MEM_CACHE_NONE);
} else
#endif /* UART_NS16550_PCIE_ENABLED */
{
/* Map directly from DTS */
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
}
#endif /* UART_NS15660_ACCESS_IOPORT */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
dev_data->iir_cache = 0U;
#endif
#ifdef UART_NS16550_DLF_ENABLED
OUTBYTE(DLF(dev), dev_data->dlf);
#endif
#ifdef UART_NS16550_PCP_ENABLED
uint32_t pcp = dev_cfg->pcp;
if (pcp) {
pcp |= PCP_EN;
OUTWORD(PCP(dev), pcp & ~PCP_UPDATE);
OUTWORD(PCP(dev), pcp | PCP_UPDATE);
}
#endif
set_baud_rate(dev, cfg->baudrate);
/* Local structure to hold temporary values to pass to OUTBYTE() */
struct uart_config uart_cfg;
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
uart_cfg.data_bits = LCR_CS5;
break;
case UART_CFG_DATA_BITS_6:
uart_cfg.data_bits = LCR_CS6;
break;
case UART_CFG_DATA_BITS_7:
uart_cfg.data_bits = LCR_CS7;
break;
case UART_CFG_DATA_BITS_8:
uart_cfg.data_bits = LCR_CS8;
break;
default:
ret = -ENOTSUP;
goto out;
}
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
uart_cfg.stop_bits = LCR_1_STB;
break;
case UART_CFG_STOP_BITS_2:
uart_cfg.stop_bits = LCR_2_STB;
break;
default:
ret = -ENOTSUP;
goto out;
}
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
uart_cfg.parity = LCR_PDIS;
break;
case UART_CFG_PARITY_EVEN:
uart_cfg.parity = LCR_EPS;
break;
default:
ret = -ENOTSUP;
goto out;
}
dev_data->uart_config = *cfg;
/* data bits, stop bits, parity, clear DLAB */
OUTBYTE(LCR(dev),
uart_cfg.data_bits | uart_cfg.stop_bits | uart_cfg.parity);
mdc = MCR_OUT2 | MCR_RTS | MCR_DTR;
#ifdef CONFIG_UART_NS16750
if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS) {
mdc |= MCR_AFCE;
}
#endif
OUTBYTE(MDC(dev), mdc);
/*
* Program FIFO: enabled, mode 0 (set for compatibility with quark),
* generate the interrupt at 8th byte
* Clear TX and RX FIFO
*/
OUTBYTE(FCR(dev),
FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR | FCR_XMITCLR
#ifdef CONFIG_UART_NS16750
| FCR_FIFO_64
#endif
);
/* clear the port */
INBYTE(RDR(dev));
/* disable interrupts */
OUTBYTE(IER(dev), 0x00);
out:
k_spin_unlock(&dev_data->lock, key);
return ret;
};
static int uart_ns16550_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct uart_ns16550_dev_data_t *data = DEV_DATA(dev);
cfg->baudrate = data->uart_config.baudrate;
cfg->parity = data->uart_config.parity;
cfg->stop_bits = data->uart_config.stop_bits;
cfg->data_bits = data->uart_config.data_bits;
cfg->flow_ctrl = data->uart_config.flow_ctrl;
return 0;
}
/**
* @brief Initialize individual UART port
*
* This routine is called to reset the chip in a quiescent state.
*
* @param dev UART device struct
*
* @return 0 if successful, failed otherwise
*/
static int uart_ns16550_init(const struct device *dev)
{
int ret;
ret = uart_ns16550_configure(dev, &DEV_DATA(dev)->uart_config);
if (ret != 0) {
return ret;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
DEV_CFG(dev)->irq_config_func(dev);
#endif
return 0;
}
/**
* @brief Poll the device for input.
*
* @param dev UART device struct
* @param c Pointer to character
*
* @return 0 if a character arrived, -1 if the input buffer if empty.
*/
static int uart_ns16550_poll_in(const struct device *dev, unsigned char *c)
{
int ret = -1;
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
if ((INBYTE(LSR(dev)) & LSR_RXRDY) != 0) {
/* got a character */
*c = INBYTE(RDR(dev));
ret = 0;
}
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return ret;
}
/**
* @brief Output a character in polled mode.
*
* Checks if the transmitter is empty. If empty, a character is written to
* the data register.
*
* If the hardware flow control is enabled then the handshake signal CTS has to
* be asserted in order to send a character.
*
* @param dev UART device struct
* @param c Character to send
*/
static void uart_ns16550_poll_out(const struct device *dev,
unsigned char c)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
while ((INBYTE(LSR(dev)) & LSR_THRE) == 0) {
}
OUTBYTE(THR(dev), c);
k_spin_unlock(&DEV_DATA(dev)->lock, key);
}
/**
* @brief Check if an error was received
*
* @param dev UART device struct
*
* @return one of UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING,
* UART_BREAK if an error was detected, 0 otherwise.
*/
static int uart_ns16550_err_check(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
int check = (INBYTE(LSR(dev)) & LSR_EOB_MASK);
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return check >> 1;
}
#if CONFIG_UART_INTERRUPT_DRIVEN
/**
* @brief Fill FIFO with data
*
* @param dev UART device struct
* @param tx_data Data to transmit
* @param size Number of bytes to send
*
* @return Number of bytes sent
*/
static int uart_ns16550_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int size)
{
int i;
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
for (i = 0; (i < size) && (INBYTE(LSR(dev)) & LSR_THRE) != 0; i++) {
OUTBYTE(THR(dev), tx_data[i]);
}
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return i;
}
/**
* @brief Read data from FIFO
*
* @param dev UART device struct
* @param rxData Data container
* @param size Container size
*
* @return Number of bytes read
*/
static int uart_ns16550_fifo_read(const struct device *dev, uint8_t *rx_data,
const int size)
{
int i;
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
for (i = 0; (i < size) && (INBYTE(LSR(dev)) & LSR_RXRDY) != 0; i++) {
rx_data[i] = INBYTE(RDR(dev));
}
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return i;
}
/**
* @brief Enable TX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_ns16550_irq_tx_enable(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
OUTBYTE(IER(dev), INBYTE(IER(dev)) | IER_TBE);
k_spin_unlock(&DEV_DATA(dev)->lock, key);
}
/**
* @brief Disable TX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_ns16550_irq_tx_disable(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
OUTBYTE(IER(dev), INBYTE(IER(dev)) & (~IER_TBE));
k_spin_unlock(&DEV_DATA(dev)->lock, key);
}
/**
* @brief Check if Tx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_ns16550_irq_tx_ready(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
int ret = ((IIRC(dev) & IIR_ID) == IIR_THRE) ? 1 : 0;
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return ret;
}
/**
* @brief Check if nothing remains to be transmitted
*
* @param dev UART device struct
*
* @return 1 if nothing remains to be transmitted, 0 otherwise
*/
static int uart_ns16550_irq_tx_complete(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
int ret = ((INBYTE(LSR(dev)) & (LSR_TEMT | LSR_THRE))
== (LSR_TEMT | LSR_THRE)) ? 1 : 0;
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return ret;
}
/**
* @brief Enable RX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_ns16550_irq_rx_enable(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
OUTBYTE(IER(dev), INBYTE(IER(dev)) | IER_RXRDY);
k_spin_unlock(&DEV_DATA(dev)->lock, key);
}
/**
* @brief Disable RX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_ns16550_irq_rx_disable(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
OUTBYTE(IER(dev), INBYTE(IER(dev)) & (~IER_RXRDY));
k_spin_unlock(&DEV_DATA(dev)->lock, key);
}
/**
* @brief Check if Rx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_ns16550_irq_rx_ready(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
int ret = ((IIRC(dev) & IIR_ID) == IIR_RBRF) ? 1 : 0;
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return ret;
}
/**
* @brief Enable error interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_ns16550_irq_err_enable(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
OUTBYTE(IER(dev), INBYTE(IER(dev)) | IER_LSR);
k_spin_unlock(&DEV_DATA(dev)->lock, key);
}
/**
* @brief Disable error interrupt in IER
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static void uart_ns16550_irq_err_disable(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
OUTBYTE(IER(dev), INBYTE(IER(dev)) & (~IER_LSR));
k_spin_unlock(&DEV_DATA(dev)->lock, key);
}
/**
* @brief Check if any IRQ is pending
*
* @param dev UART device struct
*
* @return 1 if an IRQ is pending, 0 otherwise
*/
static int uart_ns16550_irq_is_pending(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
int ret = (!(IIRC(dev) & IIR_NIP)) ? 1 : 0;
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return ret;
}
/**
* @brief Update cached contents of IIR
*
* @param dev UART device struct
*
* @return Always 1
*/
static int uart_ns16550_irq_update(const struct device *dev)
{
k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
IIRC(dev) = INBYTE(IIR(dev));
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return 1;
}
/**
* @brief Set the callback function pointer for IRQ.
*
* @param dev UART device struct
* @param cb Callback function pointer.
*
* @return N/A
*/
static void uart_ns16550_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev);
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
dev_data->cb = cb;
dev_data->cb_data = cb_data;
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Interrupt service routine.
*
* This simply calls the callback function, if one exists.
*
* @param arg Argument to ISR.
*
* @return N/A
*/
static void uart_ns16550_isr(const struct device *dev)
{
struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev);
if (dev_data->cb) {
dev_data->cb(dev, dev_data->cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_NS16550_LINE_CTRL
/**
* @brief Manipulate line control for UART.
*
* @param dev UART device struct
* @param ctrl The line control to be manipulated
* @param val Value to set the line control
*
* @return 0 if successful, failed otherwise
*/
static int uart_ns16550_line_ctrl_set(const struct device *dev,
uint32_t ctrl, uint32_t val)
{
uint32_t mdc, chg;
k_spinlock_key_t key;
switch (ctrl) {
case UART_LINE_CTRL_BAUD_RATE:
set_baud_rate(dev, val);
return 0;
case UART_LINE_CTRL_RTS:
case UART_LINE_CTRL_DTR:
key = k_spin_lock(&DEV_DATA(dev)->lock);
mdc = INBYTE(MDC(dev));
if (ctrl == UART_LINE_CTRL_RTS) {
chg = MCR_RTS;
} else {
chg = MCR_DTR;
}
if (val) {
mdc |= chg;
} else {
mdc &= ~(chg);
}
OUTBYTE(MDC(dev), mdc);
k_spin_unlock(&DEV_DATA(dev)->lock, key);
return 0;
}
return -ENOTSUP;
}
#endif /* CONFIG_UART_NS16550_LINE_CTRL */
#ifdef CONFIG_UART_NS16550_DRV_CMD
/**
* @brief Send extra command to driver
*
* @param dev UART device struct
* @param cmd Command to driver
* @param p Parameter to the command
*
* @return 0 if successful, failed otherwise
*/
static int uart_ns16550_drv_cmd(const struct device *dev, uint32_t cmd,
uint32_t p)
{
#ifdef UART_NS16550_DLF_ENABLED
if (cmd == CMD_SET_DLF) {
struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev);
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
dev_data->dlf = p;
OUTBYTE(DLF(dev), dev_data->dlf);
k_spin_unlock(&dev_data->lock, key);
return 0;
}
#endif
return -ENOTSUP;
}
#endif /* CONFIG_UART_NS16550_DRV_CMD */
static const struct uart_driver_api uart_ns16550_driver_api = {
.poll_in = uart_ns16550_poll_in,
.poll_out = uart_ns16550_poll_out,
.err_check = uart_ns16550_err_check,
.configure = uart_ns16550_configure,
.config_get = uart_ns16550_config_get,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_ns16550_fifo_fill,
.fifo_read = uart_ns16550_fifo_read,
.irq_tx_enable = uart_ns16550_irq_tx_enable,
.irq_tx_disable = uart_ns16550_irq_tx_disable,
.irq_tx_ready = uart_ns16550_irq_tx_ready,
.irq_tx_complete = uart_ns16550_irq_tx_complete,
.irq_rx_enable = uart_ns16550_irq_rx_enable,
.irq_rx_disable = uart_ns16550_irq_rx_disable,
.irq_rx_ready = uart_ns16550_irq_rx_ready,
.irq_err_enable = uart_ns16550_irq_err_enable,
.irq_err_disable = uart_ns16550_irq_err_disable,
.irq_is_pending = uart_ns16550_irq_is_pending,
.irq_update = uart_ns16550_irq_update,
.irq_callback_set = uart_ns16550_irq_callback_set,
#endif
#ifdef CONFIG_UART_NS16550_LINE_CTRL
.line_ctrl_set = uart_ns16550_line_ctrl_set,
#endif
#ifdef CONFIG_UART_NS16550_DRV_CMD
.drv_cmd = uart_ns16550_drv_cmd,
#endif
};
#include <uart_ns16550_port_0.h>
#include <uart_ns16550_port_1.h>
#include <uart_ns16550_port_2.h>
#include <uart_ns16550_port_3.h>