zephyr/drivers/timer/cavs_timer.c
Andy Ross e4a455b25d drivers/cavs_timer: Cleanup & simplification pass
General refactoring to clean up and futureproof this driver.

Remove false dependency on CONFIG_CAVS_ICTL.  This requires the CAVS
interrupt mask API, but doesn't touch the interrupt controller driver.

Remove a racy check for simultaneous interrupts.  This seems to have
been well intentioned, but it's needless: the spinlock around the
last_count computation guarantees that colliding interrupts will
correctly compute elapsed ticks (i.e. the last will compute and
announce zero ticks, which is correct and expected).  And this opened
a tiny window where you could incorrectly ignore a just-set timeout.

Factor out the specific registers used (there are only five) into
pointer-valued macros instead of banging them directly.

Unify interrupt initialization for main and auxiliary cores.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2022-01-05 15:01:45 -05:00

196 lines
4.4 KiB
C

/*
* Copyright (c) 2020 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <device.h>
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <cavs-idc.h>
#include <cavs-shim.h>
/**
* @file
* @brief CAVS DSP Wall Clock Timer driver
*
* The CAVS DSP on Intel SoC has a timer with one counter and two compare
* registers that is external to the CPUs. This timer is accessible from
* all available CPU cores and provides a synchronized timer under SMP.
*/
#define COMPARATOR_IDX 0 /* 0 or 1 */
#define TIMER_IRQ DSP_WCT_IRQ(COMPARATOR_IDX)
#define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_CYC 0xFFFFFFFFUL
#define MAX_TICKS ((MAX_CYC - CYC_PER_TICK) / CYC_PER_TICK)
#define MIN_DELAY (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / 100000)
BUILD_ASSERT(MIN_DELAY < CYC_PER_TICK);
BUILD_ASSERT(COMPARATOR_IDX >= 0 && COMPARATOR_IDX <= 1);
#define WCTCS (&CAVS_SHIM.dspwctcs)
#define COUNTER_HI (&CAVS_SHIM.dspwc_hi)
#define COUNTER_LO (&CAVS_SHIM.dspwc_lo)
#define COMPARE_HI (&CAVS_SHIM.UTIL_CAT(UTIL_CAT(dspwct, COMPARATOR_IDX), c_hi))
#define COMPARE_LO (&CAVS_SHIM.UTIL_CAT(UTIL_CAT(dspwct, COMPARATOR_IDX), c_lo))
static struct k_spinlock lock;
static uint64_t last_count;
static void set_compare(uint64_t time)
{
/* Disarm the comparator to prevent spurious triggers */
*WCTCS &= ~DSP_WCT_CS_TA(COMPARATOR_IDX);
*COMPARE_LO = (uint32_t)time;
*COMPARE_HI = (uint32_t)(time >> 32);
/* Arm the timer */
*WCTCS |= DSP_WCT_CS_TA(COMPARATOR_IDX);
}
static uint64_t count(void)
{
/* The count register is 64 bits, but we're a 32 bit CPU that
* can only read four bytes at a time, so a bit of care is
* needed to prevent racing against a wraparound of the low
* word. Wrap the low read between two reads of the high word
* and make sure it didn't change.
*/
uint32_t hi0, hi1, lo;
do {
hi0 = *COUNTER_HI;
lo = *COUNTER_LO;
hi1 = *COUNTER_HI;
} while (hi0 != hi1);
return (((uint64_t)hi0) << 32) | lo;
}
static uint32_t count32(void)
{
return *COUNTER_LO;
}
static void compare_isr(const void *arg)
{
ARG_UNUSED(arg);
uint64_t curr;
uint32_t dticks;
k_spinlock_key_t key = k_spin_lock(&lock);
curr = count();
dticks = (uint32_t)((curr - last_count) / CYC_PER_TICK);
/* Clear the triggered bit */
*WCTCS |= DSP_WCT_CS_TT(COMPARATOR_IDX);
last_count += dticks * CYC_PER_TICK;
#ifndef CONFIG_TICKLESS_KERNEL
uint64_t next = last_count + CYC_PER_TICK;
if ((int64_t)(next - curr) < MIN_DELAY) {
next += CYC_PER_TICK;
}
set_compare(next);
#endif
k_spin_unlock(&lock, key);
sys_clock_announce(dticks);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#ifdef CONFIG_TICKLESS_KERNEL
ticks = ticks == K_TICKS_FOREVER ? MAX_TICKS : ticks;
ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t curr = count();
uint64_t next;
uint32_t adj, cyc = ticks * CYC_PER_TICK;
/* Round up to next tick boundary */
adj = (uint32_t)(curr - last_count) + (CYC_PER_TICK - 1);
if (cyc <= MAX_CYC - adj) {
cyc += adj;
} else {
cyc = MAX_CYC;
}
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
next = last_count + cyc;
if (((uint32_t)next - (uint32_t)curr) < MIN_DELAY) {
next += CYC_PER_TICK;
}
set_compare(next);
k_spin_unlock(&lock, key);
#endif
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = (count32() - (uint32_t)last_count) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
uint32_t sys_clock_cycle_get_32(void)
{
return count32();
}
uint64_t sys_clock_cycle_get_64(void)
{
return count();
}
/* Interrupt setup is partially-cpu-local state, so needs to be
* repeated for each core when it starts. Note that this conforms to
* the Zephyr convention of sending timer interrupts to all cpus (for
* the benefit of timeslicing).
*/
static void irq_init(void)
{
int cpu = arch_curr_cpu()->id;
CAVS_INTCTRL[cpu].l2.clear = CAVS_L2_DWCT0;
irq_enable(TIMER_IRQ);
}
void smp_timer_init(void)
{
irq_init();
}
/* Runs on core 0 only */
static int sys_clock_driver_init(const struct device *dev)
{
uint64_t curr = count();
IRQ_CONNECT(TIMER_IRQ, 0, compare_isr, 0, 0);
set_compare(curr + CYC_PER_TICK);
last_count = curr;
irq_init();
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);