zephyr/kernel/mutex.c
Andy Ross 7022000b5c kernel/mutex: Fix races, make unlock rescheduling
The k_mutex is a priority-inheriting mutex, so on unlock it's possible
that a thread's priority will be lowered.  Make this a reschedule
point so that reasoning about thread priorities is easier (possibly at
the cost of performance): most users are going to expect that the
priority elevation stops at exactly the moment of unlock.

Note that this also reorders the code to fix what appear to be obvious
race conditions.  After the call to z_ready_thread(), that thread may
be run (e.g. by an interrupt preemption or on another SMP core), yet
the return value and mutex weren't correctly set yet.  The spinlock
was also prematurely released.

Fixes #20802

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-12-03 12:33:17 -06:00

266 lines
6.7 KiB
C

/*
* Copyright (c) 2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file @brief mutex kernel services
*
* This module contains routines for handling mutex locking and unlocking.
*
* Mutexes implement a priority inheritance algorithm that boosts the priority
* level of the owning thread to match the priority level of the highest
* priority thread waiting on the mutex.
*
* Each mutex that contributes to priority inheritance must be released in the
* reverse order in which it was acquired. Furthermore each subsequent mutex
* that contributes to raising the owning thread's priority level must be
* acquired at a point after the most recent "bumping" of the priority level.
*
* For example, if thread A has two mutexes contributing to the raising of its
* priority level, the second mutex M2 must be acquired by thread A after
* thread A's priority level was bumped due to owning the first mutex M1.
* When releasing the mutex, thread A must release M2 before it releases M1.
* Failure to follow this nested model may result in threads running at
* unexpected priority levels (too high, or too low).
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <ksched.h>
#include <wait_q.h>
#include <sys/dlist.h>
#include <debug/object_tracing_common.h>
#include <errno.h>
#include <init.h>
#include <syscall_handler.h>
#include <debug/tracing.h>
/* We use a global spinlock here because some of the synchronization
* is protecting things like owner thread priorities which aren't
* "part of" a single k_mutex. Should move those bits of the API
* under the scheduler lock so we can break this up.
*/
static struct k_spinlock lock;
#ifdef CONFIG_OBJECT_TRACING
struct k_mutex *_trace_list_k_mutex;
/*
* Complete initialization of statically defined mutexes.
*/
static int init_mutex_module(struct device *dev)
{
ARG_UNUSED(dev);
Z_STRUCT_SECTION_FOREACH(k_mutex, mutex) {
SYS_TRACING_OBJ_INIT(k_mutex, mutex);
}
return 0;
}
SYS_INIT(init_mutex_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJECT_TRACING */
void z_impl_k_mutex_init(struct k_mutex *mutex)
{
mutex->owner = NULL;
mutex->lock_count = 0U;
sys_trace_void(SYS_TRACE_ID_MUTEX_INIT);
z_waitq_init(&mutex->wait_q);
SYS_TRACING_OBJ_INIT(k_mutex, mutex);
z_object_init(mutex);
sys_trace_end_call(SYS_TRACE_ID_MUTEX_INIT);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_mutex_init(struct k_mutex *mutex)
{
Z_OOPS(Z_SYSCALL_OBJ_INIT(mutex, K_OBJ_MUTEX));
z_impl_k_mutex_init(mutex);
}
#include <syscalls/k_mutex_init_mrsh.c>
#endif
static s32_t new_prio_for_inheritance(s32_t target, s32_t limit)
{
int new_prio = z_is_prio_higher(target, limit) ? target : limit;
new_prio = z_get_new_prio_with_ceiling(new_prio);
return new_prio;
}
static bool adjust_owner_prio(struct k_mutex *mutex, s32_t new_prio)
{
if (mutex->owner->base.prio != new_prio) {
K_DEBUG("%p (ready (y/n): %c) prio changed to %d (was %d)\n",
mutex->owner, z_is_thread_ready(mutex->owner) ?
'y' : 'n',
new_prio, mutex->owner->base.prio);
return z_set_prio(mutex->owner, new_prio);
}
return false;
}
int z_impl_k_mutex_lock(struct k_mutex *mutex, s32_t timeout)
{
int new_prio;
k_spinlock_key_t key;
bool resched = false;
sys_trace_void(SYS_TRACE_ID_MUTEX_LOCK);
key = k_spin_lock(&lock);
if (likely((mutex->lock_count == 0U) || (mutex->owner == _current))) {
mutex->owner_orig_prio = (mutex->lock_count == 0U) ?
_current->base.prio :
mutex->owner_orig_prio;
mutex->lock_count++;
mutex->owner = _current;
K_DEBUG("%p took mutex %p, count: %d, orig prio: %d\n",
_current, mutex, mutex->lock_count,
mutex->owner_orig_prio);
k_spin_unlock(&lock, key);
sys_trace_end_call(SYS_TRACE_ID_MUTEX_LOCK);
return 0;
}
if (unlikely(timeout == (s32_t)K_NO_WAIT)) {
k_spin_unlock(&lock, key);
sys_trace_end_call(SYS_TRACE_ID_MUTEX_LOCK);
return -EBUSY;
}
new_prio = new_prio_for_inheritance(_current->base.prio,
mutex->owner->base.prio);
K_DEBUG("adjusting prio up on mutex %p\n", mutex);
if (z_is_prio_higher(new_prio, mutex->owner->base.prio)) {
resched = adjust_owner_prio(mutex, new_prio);
}
int got_mutex = z_pend_curr(&lock, key, &mutex->wait_q, timeout);
K_DEBUG("on mutex %p got_mutex value: %d\n", mutex, got_mutex);
K_DEBUG("%p got mutex %p (y/n): %c\n", _current, mutex,
got_mutex ? 'y' : 'n');
if (got_mutex == 0) {
sys_trace_end_call(SYS_TRACE_ID_MUTEX_LOCK);
return 0;
}
/* timed out */
K_DEBUG("%p timeout on mutex %p\n", _current, mutex);
key = k_spin_lock(&lock);
struct k_thread *waiter = z_waitq_head(&mutex->wait_q);
new_prio = mutex->owner_orig_prio;
new_prio = (waiter != NULL) ?
new_prio_for_inheritance(waiter->base.prio, new_prio) :
new_prio;
K_DEBUG("adjusting prio down on mutex %p\n", mutex);
resched = adjust_owner_prio(mutex, new_prio) || resched;
if (resched) {
z_reschedule(&lock, key);
} else {
k_spin_unlock(&lock, key);
}
sys_trace_end_call(SYS_TRACE_ID_MUTEX_LOCK);
return -EAGAIN;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_mutex_lock(struct k_mutex *mutex, s32_t timeout)
{
Z_OOPS(Z_SYSCALL_OBJ(mutex, K_OBJ_MUTEX));
return z_impl_k_mutex_lock(mutex, timeout);
}
#include <syscalls/k_mutex_lock_mrsh.c>
#endif
void z_impl_k_mutex_unlock(struct k_mutex *mutex)
{
struct k_thread *new_owner;
__ASSERT(mutex->lock_count > 0U, "");
__ASSERT(mutex->owner == _current, "");
sys_trace_void(SYS_TRACE_ID_MUTEX_UNLOCK);
z_sched_lock();
K_DEBUG("mutex %p lock_count: %d\n", mutex, mutex->lock_count);
if (mutex->lock_count - 1U != 0U) {
mutex->lock_count--;
goto k_mutex_unlock_return;
}
k_spinlock_key_t key = k_spin_lock(&lock);
adjust_owner_prio(mutex, mutex->owner_orig_prio);
new_owner = z_unpend_first_thread(&mutex->wait_q);
mutex->owner = new_owner;
K_DEBUG("new owner of mutex %p: %p (prio: %d)\n",
mutex, new_owner, new_owner ? new_owner->base.prio : -1000);
if (new_owner != NULL) {
/*
* new owner is already of higher or equal prio than first
* waiter since the wait queue is priority-based: no need to
* ajust its priority
*/
mutex->owner_orig_prio = new_owner->base.prio;
arch_thread_return_value_set(new_owner, 0);
z_ready_thread(new_owner);
z_reschedule(&lock, key);
} else {
mutex->lock_count = 0U;
k_spin_unlock(&lock, key);
}
k_mutex_unlock_return:
k_sched_unlock();
sys_trace_end_call(SYS_TRACE_ID_MUTEX_UNLOCK);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_mutex_unlock(struct k_mutex *mutex)
{
Z_OOPS(Z_SYSCALL_OBJ(mutex, K_OBJ_MUTEX));
Z_OOPS(Z_SYSCALL_VERIFY(mutex->lock_count > 0));
Z_OOPS(Z_SYSCALL_VERIFY(mutex->owner == _current));
z_impl_k_mutex_unlock(mutex);
}
#include <syscalls/k_mutex_unlock_mrsh.c>
#endif