2d7460482d
This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
780 lines
21 KiB
C
780 lines
21 KiB
C
/*
|
|
* Copyright (c) 2016 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* @brief Pipes
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <kernel_structs.h>
|
|
#include <debug/object_tracing_common.h>
|
|
#include <toolchain.h>
|
|
#include <linker/sections.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <sys/dlist.h>
|
|
#include <init.h>
|
|
#include <syscall_handler.h>
|
|
#include <sys/__assert.h>
|
|
#include <kernel_internal.h>
|
|
|
|
struct k_pipe_desc {
|
|
unsigned char *buffer; /* Position in src/dest buffer */
|
|
size_t bytes_to_xfer; /* # bytes left to transfer */
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
struct k_mem_block *block; /* Pointer to memory block */
|
|
struct k_mem_block copy_block; /* For backwards compatibility */
|
|
struct k_sem *sem; /* Semaphore to give if async */
|
|
#endif
|
|
};
|
|
|
|
struct k_pipe_async {
|
|
struct _thread_base thread; /* Dummy thread object */
|
|
struct k_pipe_desc desc; /* Pipe message descriptor */
|
|
};
|
|
|
|
#ifdef CONFIG_OBJECT_TRACING
|
|
struct k_pipe *_trace_list_k_pipe;
|
|
#endif /* CONFIG_OBJECT_TRACING */
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
|
|
/* stack of unused asynchronous message descriptors */
|
|
K_STACK_DEFINE(pipe_async_msgs, CONFIG_NUM_PIPE_ASYNC_MSGS);
|
|
|
|
/* Allocate an asynchronous message descriptor */
|
|
static void pipe_async_alloc(struct k_pipe_async **async)
|
|
{
|
|
(void)k_stack_pop(&pipe_async_msgs, (stack_data_t *)async, K_FOREVER);
|
|
}
|
|
|
|
/* Free an asynchronous message descriptor */
|
|
static void pipe_async_free(struct k_pipe_async *async)
|
|
{
|
|
k_stack_push(&pipe_async_msgs, (stack_data_t)async);
|
|
}
|
|
|
|
/* Finish an asynchronous operation */
|
|
static void pipe_async_finish(struct k_pipe_async *async_desc)
|
|
{
|
|
/*
|
|
* An asynchronous operation is finished with the scheduler locked
|
|
* to prevent the called routines from scheduling a new thread.
|
|
*/
|
|
|
|
k_mem_pool_free(async_desc->desc.block);
|
|
|
|
if (async_desc->desc.sem != NULL) {
|
|
k_sem_give(async_desc->desc.sem);
|
|
}
|
|
|
|
pipe_async_free(async_desc);
|
|
}
|
|
#endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) || \
|
|
defined(CONFIG_OBJECT_TRACING)
|
|
|
|
/*
|
|
* Do run-time initialization of pipe object subsystem.
|
|
*/
|
|
static int init_pipes_module(struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
/* Array of asynchronous message descriptors */
|
|
static struct k_pipe_async __noinit async_msg[CONFIG_NUM_PIPE_ASYNC_MSGS];
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
/*
|
|
* Create pool of asynchronous pipe message descriptors.
|
|
*
|
|
* A dummy thread requires minimal initialization, since it never gets
|
|
* to execute. The _THREAD_DUMMY flag is sufficient to distinguish a
|
|
* dummy thread from a real one. The threads are *not* added to the
|
|
* kernel's list of known threads.
|
|
*
|
|
* Once initialized, the address of each descriptor is added to a stack
|
|
* that governs access to them.
|
|
*/
|
|
|
|
for (int i = 0; i < CONFIG_NUM_PIPE_ASYNC_MSGS; i++) {
|
|
async_msg[i].thread.thread_state = _THREAD_DUMMY;
|
|
async_msg[i].thread.swap_data = &async_msg[i].desc;
|
|
|
|
z_init_thread_timeout(&async_msg[i].thread);
|
|
|
|
k_stack_push(&pipe_async_msgs, (stack_data_t)&async_msg[i]);
|
|
}
|
|
#endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */
|
|
|
|
/* Complete initialization of statically defined mailboxes. */
|
|
|
|
#ifdef CONFIG_OBJECT_TRACING
|
|
Z_STRUCT_SECTION_FOREACH(k_pipe, pipe) {
|
|
SYS_TRACING_OBJ_INIT(k_pipe, pipe);
|
|
}
|
|
#endif /* CONFIG_OBJECT_TRACING */
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_pipes_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
|
|
#endif /* CONFIG_NUM_PIPE_ASYNC_MSGS or CONFIG_OBJECT_TRACING */
|
|
|
|
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
|
|
{
|
|
pipe->buffer = buffer;
|
|
pipe->size = size;
|
|
pipe->bytes_used = 0;
|
|
pipe->read_index = 0;
|
|
pipe->write_index = 0;
|
|
pipe->flags = 0;
|
|
z_waitq_init(&pipe->wait_q.writers);
|
|
z_waitq_init(&pipe->wait_q.readers);
|
|
SYS_TRACING_OBJ_INIT(k_pipe, pipe);
|
|
z_object_init(pipe);
|
|
}
|
|
|
|
int z_impl_k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
|
|
{
|
|
void *buffer;
|
|
int ret;
|
|
|
|
if (size != 0) {
|
|
buffer = z_thread_malloc(size);
|
|
if (buffer != NULL) {
|
|
k_pipe_init(pipe, buffer, size);
|
|
pipe->flags = K_PIPE_FLAG_ALLOC;
|
|
ret = 0;
|
|
} else {
|
|
ret = -ENOMEM;
|
|
}
|
|
} else {
|
|
k_pipe_init(pipe, NULL, 0);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(pipe, K_OBJ_PIPE));
|
|
|
|
return z_impl_k_pipe_alloc_init(pipe, size);
|
|
}
|
|
#include <syscalls/k_pipe_alloc_init_mrsh.c>
|
|
#endif
|
|
|
|
void k_pipe_cleanup(struct k_pipe *pipe)
|
|
{
|
|
__ASSERT_NO_MSG(!z_waitq_head(&pipe->wait_q.readers));
|
|
__ASSERT_NO_MSG(!z_waitq_head(&pipe->wait_q.writers));
|
|
|
|
if ((pipe->flags & K_PIPE_FLAG_ALLOC) != 0) {
|
|
k_free(pipe->buffer);
|
|
pipe->buffer = NULL;
|
|
pipe->flags &= ~K_PIPE_FLAG_ALLOC;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Copy bytes from @a src to @a dest
|
|
*
|
|
* @return Number of bytes copied
|
|
*/
|
|
static size_t pipe_xfer(unsigned char *dest, size_t dest_size,
|
|
const unsigned char *src, size_t src_size)
|
|
{
|
|
size_t num_bytes = MIN(dest_size, src_size);
|
|
const unsigned char *end = src + num_bytes;
|
|
|
|
while (src != end) {
|
|
*dest = *src;
|
|
dest++;
|
|
src++;
|
|
}
|
|
|
|
return num_bytes;
|
|
}
|
|
|
|
/**
|
|
* @brief Put data from @a src into the pipe's circular buffer
|
|
*
|
|
* Modifies the following fields in @a pipe:
|
|
* buffer, bytes_used, write_index
|
|
*
|
|
* @return Number of bytes written to the pipe's circular buffer
|
|
*/
|
|
static size_t pipe_buffer_put(struct k_pipe *pipe,
|
|
const unsigned char *src, size_t src_size)
|
|
{
|
|
size_t bytes_copied;
|
|
size_t run_length;
|
|
size_t num_bytes_written = 0;
|
|
int i;
|
|
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
run_length = MIN(pipe->size - pipe->bytes_used,
|
|
pipe->size - pipe->write_index);
|
|
|
|
bytes_copied = pipe_xfer(pipe->buffer + pipe->write_index,
|
|
run_length,
|
|
src + num_bytes_written,
|
|
src_size - num_bytes_written);
|
|
|
|
num_bytes_written += bytes_copied;
|
|
pipe->bytes_used += bytes_copied;
|
|
pipe->write_index += bytes_copied;
|
|
if (pipe->write_index == pipe->size) {
|
|
pipe->write_index = 0;
|
|
}
|
|
}
|
|
|
|
return num_bytes_written;
|
|
}
|
|
|
|
/**
|
|
* @brief Get data from the pipe's circular buffer
|
|
*
|
|
* Modifies the following fields in @a pipe:
|
|
* bytes_used, read_index
|
|
*
|
|
* @return Number of bytes read from the pipe's circular buffer
|
|
*/
|
|
static size_t pipe_buffer_get(struct k_pipe *pipe,
|
|
unsigned char *dest, size_t dest_size)
|
|
{
|
|
size_t bytes_copied;
|
|
size_t run_length;
|
|
size_t num_bytes_read = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
run_length = MIN(pipe->bytes_used,
|
|
pipe->size - pipe->read_index);
|
|
|
|
bytes_copied = pipe_xfer(dest + num_bytes_read,
|
|
dest_size - num_bytes_read,
|
|
pipe->buffer + pipe->read_index,
|
|
run_length);
|
|
|
|
num_bytes_read += bytes_copied;
|
|
pipe->bytes_used -= bytes_copied;
|
|
pipe->read_index += bytes_copied;
|
|
if (pipe->read_index == pipe->size) {
|
|
pipe->read_index = 0;
|
|
}
|
|
}
|
|
|
|
return num_bytes_read;
|
|
}
|
|
|
|
/**
|
|
* @brief Prepare a working set of readers/writers
|
|
*
|
|
* Prepare a list of "working threads" into/from which the data
|
|
* will be directly copied. This list is useful as it is used to ...
|
|
*
|
|
* 1. avoid double copying
|
|
* 2. minimize interrupt latency as interrupts are unlocked
|
|
* while copying data
|
|
* 3. ensure a timeout can not make the request impossible to satisfy
|
|
*
|
|
* The list is populated with previously pended threads that will be ready to
|
|
* run after the pipe call is complete.
|
|
*
|
|
* Important things to remember when reading from the pipe ...
|
|
* 1. If there are writers int @a wait_q, then the pipe's buffer is full.
|
|
* 2. Conversely if the pipe's buffer is not full, there are no writers.
|
|
* 3. The amount of available data in the pipe is the sum the bytes used in
|
|
* the pipe (@a pipe_space) and all the requests from the waiting writers.
|
|
* 4. Since data is read from the pipe's buffer first, the working set must
|
|
* include writers that will (try to) re-fill the pipe's buffer afterwards.
|
|
*
|
|
* Important things to remember when writing to the pipe ...
|
|
* 1. If there are readers in @a wait_q, then the pipe's buffer is empty.
|
|
* 2. Conversely if the pipe's buffer is not empty, then there are no readers.
|
|
* 3. The amount of space available in the pipe is the sum of the bytes unused
|
|
* in the pipe (@a pipe_space) and all the requests from the waiting readers.
|
|
*
|
|
* @return false if request is unsatisfiable, otherwise true
|
|
*/
|
|
static bool pipe_xfer_prepare(sys_dlist_t *xfer_list,
|
|
struct k_thread **waiter,
|
|
_wait_q_t *wait_q,
|
|
size_t pipe_space,
|
|
size_t bytes_to_xfer,
|
|
size_t min_xfer,
|
|
s32_t timeout)
|
|
{
|
|
struct k_thread *thread;
|
|
struct k_pipe_desc *desc;
|
|
size_t num_bytes = 0;
|
|
|
|
if (timeout == K_NO_WAIT) {
|
|
_WAIT_Q_FOR_EACH(wait_q, thread) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
|
|
num_bytes += desc->bytes_to_xfer;
|
|
|
|
if (num_bytes >= bytes_to_xfer) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (num_bytes + pipe_space < min_xfer) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either @a timeout is not K_NO_WAIT (so the thread may pend) or
|
|
* the entire request can be satisfied. Generate the working list.
|
|
*/
|
|
|
|
sys_dlist_init(xfer_list);
|
|
num_bytes = 0;
|
|
|
|
while ((thread = z_waitq_head(wait_q)) != NULL) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
num_bytes += desc->bytes_to_xfer;
|
|
|
|
if (num_bytes > bytes_to_xfer) {
|
|
/*
|
|
* This request can not be fully satisfied.
|
|
* Do not remove it from the wait_q.
|
|
* Do not abort its timeout (if applicable).
|
|
* Do not add it to the transfer list
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This request can be fully satisfied.
|
|
* Remove it from the wait_q.
|
|
* Abort its timeout.
|
|
* Add it to the transfer list.
|
|
*/
|
|
z_unpend_thread(thread);
|
|
sys_dlist_append(xfer_list, &thread->base.qnode_dlist);
|
|
}
|
|
|
|
*waiter = (num_bytes > bytes_to_xfer) ? thread : NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Determine the correct return code
|
|
*
|
|
* Bytes Xferred No Wait Wait
|
|
* >= Minimum 0 0
|
|
* < Minimum -EIO* -EAGAIN
|
|
*
|
|
* * The "-EIO No Wait" case was already checked when the "working set"
|
|
* was created in _pipe_xfer_prepare().
|
|
*
|
|
* @return See table above
|
|
*/
|
|
static int pipe_return_code(size_t min_xfer, size_t bytes_remaining,
|
|
size_t bytes_requested)
|
|
{
|
|
if (bytes_requested - bytes_remaining >= min_xfer) {
|
|
/*
|
|
* At least the minimum number of requested
|
|
* bytes have been transferred.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* @brief Ready a pipe thread
|
|
*
|
|
* If the pipe thread is a real thread, then add it to the ready queue.
|
|
* If it is a dummy thread, then finish the asynchronous work.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void pipe_thread_ready(struct k_thread *thread)
|
|
{
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
if ((thread->base.thread_state & _THREAD_DUMMY) != 0U) {
|
|
pipe_async_finish((struct k_pipe_async *)thread);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
z_ready_thread(thread);
|
|
}
|
|
|
|
/**
|
|
* @brief Internal API used to send data to a pipe
|
|
*/
|
|
int z_pipe_put_internal(struct k_pipe *pipe, struct k_pipe_async *async_desc,
|
|
unsigned char *data, size_t bytes_to_write,
|
|
size_t *bytes_written, size_t min_xfer,
|
|
s32_t timeout)
|
|
{
|
|
struct k_thread *reader;
|
|
struct k_pipe_desc *desc;
|
|
sys_dlist_t xfer_list;
|
|
size_t num_bytes_written = 0;
|
|
size_t bytes_copied;
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS == 0)
|
|
ARG_UNUSED(async_desc);
|
|
#endif
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
/*
|
|
* Create a list of "working readers" into which the data will be
|
|
* directly copied.
|
|
*/
|
|
|
|
if (!pipe_xfer_prepare(&xfer_list, &reader, &pipe->wait_q.readers,
|
|
pipe->size - pipe->bytes_used, bytes_to_write,
|
|
min_xfer, timeout)) {
|
|
k_spin_unlock(&pipe->lock, key);
|
|
*bytes_written = 0;
|
|
return -EIO;
|
|
}
|
|
|
|
z_sched_lock();
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
/*
|
|
* 1. 'xfer_list' currently contains a list of reader threads that can
|
|
* have their read requests fulfilled by the current call.
|
|
* 2. 'reader' if not NULL points to a thread on the reader wait_q
|
|
* that can get some of its requested data.
|
|
* 3. Interrupts are unlocked but the scheduler is locked to allow
|
|
* ticks to be delivered but no scheduling to occur
|
|
* 4. If 'reader' times out while we are copying data, not only do we
|
|
* still have a pointer to it, but it can not execute until this call
|
|
* is complete so it is still safe to copy data to it.
|
|
*/
|
|
|
|
struct k_thread *thread = (struct k_thread *)
|
|
sys_dlist_get(&xfer_list);
|
|
while (thread != NULL) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer,
|
|
data + num_bytes_written,
|
|
bytes_to_write - num_bytes_written);
|
|
|
|
num_bytes_written += bytes_copied;
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
|
|
/* The thread's read request has been satisfied. Ready it. */
|
|
z_ready_thread(thread);
|
|
|
|
thread = (struct k_thread *)sys_dlist_get(&xfer_list);
|
|
}
|
|
|
|
/*
|
|
* Copy any data to the reader that we left on the wait_q.
|
|
* It is possible no data will be copied.
|
|
*/
|
|
if (reader != NULL) {
|
|
desc = (struct k_pipe_desc *)reader->base.swap_data;
|
|
bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer,
|
|
data + num_bytes_written,
|
|
bytes_to_write - num_bytes_written);
|
|
|
|
num_bytes_written += bytes_copied;
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
}
|
|
|
|
/*
|
|
* As much data as possible has been directly copied to any waiting
|
|
* readers. Add as much as possible to the pipe's circular buffer.
|
|
*/
|
|
|
|
num_bytes_written +=
|
|
pipe_buffer_put(pipe, data + num_bytes_written,
|
|
bytes_to_write - num_bytes_written);
|
|
|
|
if (num_bytes_written == bytes_to_write) {
|
|
*bytes_written = num_bytes_written;
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
if (async_desc != NULL) {
|
|
pipe_async_finish(async_desc);
|
|
}
|
|
#endif
|
|
k_sched_unlock();
|
|
return 0;
|
|
}
|
|
|
|
/* Not all data was copied. */
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
if (async_desc != NULL) {
|
|
/*
|
|
* Lock interrupts and unlock the scheduler before
|
|
* manipulating the writers wait_q.
|
|
*/
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
z_sched_unlock_no_reschedule();
|
|
|
|
async_desc->desc.buffer = data + num_bytes_written;
|
|
async_desc->desc.bytes_to_xfer =
|
|
bytes_to_write - num_bytes_written;
|
|
|
|
z_pend_thread((struct k_thread *) &async_desc->thread,
|
|
&pipe->wait_q.writers, K_FOREVER);
|
|
z_reschedule(&pipe->lock, key);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
struct k_pipe_desc pipe_desc;
|
|
|
|
pipe_desc.buffer = data + num_bytes_written;
|
|
pipe_desc.bytes_to_xfer = bytes_to_write - num_bytes_written;
|
|
|
|
if (timeout != K_NO_WAIT) {
|
|
_current->base.swap_data = &pipe_desc;
|
|
/*
|
|
* Lock interrupts and unlock the scheduler before
|
|
* manipulating the writers wait_q.
|
|
*/
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
z_sched_unlock_no_reschedule();
|
|
(void)z_pend_curr(&pipe->lock, key,
|
|
&pipe->wait_q.writers, timeout);
|
|
} else {
|
|
k_sched_unlock();
|
|
}
|
|
|
|
*bytes_written = bytes_to_write - pipe_desc.bytes_to_xfer;
|
|
|
|
return pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer,
|
|
bytes_to_write);
|
|
}
|
|
|
|
int z_impl_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read,
|
|
size_t *bytes_read, size_t min_xfer, s32_t timeout)
|
|
{
|
|
struct k_thread *writer;
|
|
struct k_pipe_desc *desc;
|
|
sys_dlist_t xfer_list;
|
|
size_t num_bytes_read = 0;
|
|
size_t bytes_copied;
|
|
|
|
__ASSERT(min_xfer <= bytes_to_read, "");
|
|
__ASSERT(bytes_read != NULL, "");
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
/*
|
|
* Create a list of "working readers" into which the data will be
|
|
* directly copied.
|
|
*/
|
|
|
|
if (!pipe_xfer_prepare(&xfer_list, &writer, &pipe->wait_q.writers,
|
|
pipe->bytes_used, bytes_to_read,
|
|
min_xfer, timeout)) {
|
|
k_spin_unlock(&pipe->lock, key);
|
|
*bytes_read = 0;
|
|
return -EIO;
|
|
}
|
|
|
|
z_sched_lock();
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
num_bytes_read = pipe_buffer_get(pipe, data, bytes_to_read);
|
|
|
|
/*
|
|
* 1. 'xfer_list' currently contains a list of writer threads that can
|
|
* have their write requests fulfilled by the current call.
|
|
* 2. 'writer' if not NULL points to a thread on the writer wait_q
|
|
* that can post some of its requested data.
|
|
* 3. Data will be copied from each writer's buffer to either the
|
|
* reader's buffer and/or to the pipe's circular buffer.
|
|
* 4. Interrupts are unlocked but the scheduler is locked to allow
|
|
* ticks to be delivered but no scheduling to occur
|
|
* 5. If 'writer' times out while we are copying data, not only do we
|
|
* still have a pointer to it, but it can not execute until this
|
|
* call is complete so it is still safe to copy data from it.
|
|
*/
|
|
|
|
struct k_thread *thread = (struct k_thread *)
|
|
sys_dlist_get(&xfer_list);
|
|
while ((thread != NULL) && (num_bytes_read < bytes_to_read)) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
bytes_copied = pipe_xfer((u8_t *)data + num_bytes_read,
|
|
bytes_to_read - num_bytes_read,
|
|
desc->buffer, desc->bytes_to_xfer);
|
|
|
|
num_bytes_read += bytes_copied;
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
|
|
/*
|
|
* It is expected that the write request will be satisfied.
|
|
* However, if the read request was satisfied before the
|
|
* write request was satisfied, then the write request must
|
|
* finish later when writing to the pipe's circular buffer.
|
|
*/
|
|
if (num_bytes_read == bytes_to_read) {
|
|
break;
|
|
}
|
|
pipe_thread_ready(thread);
|
|
|
|
thread = (struct k_thread *)sys_dlist_get(&xfer_list);
|
|
}
|
|
|
|
if ((writer != NULL) && (num_bytes_read < bytes_to_read)) {
|
|
desc = (struct k_pipe_desc *)writer->base.swap_data;
|
|
bytes_copied = pipe_xfer((u8_t *)data + num_bytes_read,
|
|
bytes_to_read - num_bytes_read,
|
|
desc->buffer, desc->bytes_to_xfer);
|
|
|
|
num_bytes_read += bytes_copied;
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
}
|
|
|
|
/*
|
|
* Copy as much data as possible from the writers (if any)
|
|
* into the pipe's circular buffer.
|
|
*/
|
|
|
|
while (thread != NULL) {
|
|
desc = (struct k_pipe_desc *)thread->base.swap_data;
|
|
bytes_copied = pipe_buffer_put(pipe, desc->buffer,
|
|
desc->bytes_to_xfer);
|
|
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
|
|
/* Write request has been satisfied */
|
|
pipe_thread_ready(thread);
|
|
|
|
thread = (struct k_thread *)sys_dlist_get(&xfer_list);
|
|
}
|
|
|
|
if (writer != NULL) {
|
|
desc = (struct k_pipe_desc *)writer->base.swap_data;
|
|
bytes_copied = pipe_buffer_put(pipe, desc->buffer,
|
|
desc->bytes_to_xfer);
|
|
|
|
desc->buffer += bytes_copied;
|
|
desc->bytes_to_xfer -= bytes_copied;
|
|
}
|
|
|
|
if (num_bytes_read == bytes_to_read) {
|
|
k_sched_unlock();
|
|
|
|
*bytes_read = num_bytes_read;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Not all data was read. */
|
|
|
|
struct k_pipe_desc pipe_desc;
|
|
|
|
pipe_desc.buffer = (u8_t *)data + num_bytes_read;
|
|
pipe_desc.bytes_to_xfer = bytes_to_read - num_bytes_read;
|
|
|
|
if (timeout != K_NO_WAIT) {
|
|
_current->base.swap_data = &pipe_desc;
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
z_sched_unlock_no_reschedule();
|
|
(void)z_pend_curr(&pipe->lock, key,
|
|
&pipe->wait_q.readers, timeout);
|
|
} else {
|
|
k_sched_unlock();
|
|
}
|
|
|
|
*bytes_read = bytes_to_read - pipe_desc.bytes_to_xfer;
|
|
|
|
return pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer,
|
|
bytes_to_read);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
int z_vrfy_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read,
|
|
size_t *bytes_read, size_t min_xfer, s32_t timeout)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_read, sizeof(*bytes_read)));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE((void *)data, bytes_to_read));
|
|
Z_OOPS(Z_SYSCALL_VERIFY(min_xfer <= bytes_to_read));
|
|
|
|
return z_impl_k_pipe_get((struct k_pipe *)pipe, (void *)data,
|
|
bytes_to_read, bytes_read, min_xfer,
|
|
timeout);
|
|
}
|
|
#include <syscalls/k_pipe_get_mrsh.c>
|
|
#endif
|
|
|
|
int z_impl_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write,
|
|
size_t *bytes_written, size_t min_xfer, s32_t timeout)
|
|
{
|
|
__ASSERT(min_xfer <= bytes_to_write, "");
|
|
__ASSERT(bytes_written != NULL, "");
|
|
|
|
return z_pipe_put_internal(pipe, NULL, data,
|
|
bytes_to_write, bytes_written,
|
|
min_xfer, timeout);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
int z_vrfy_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write,
|
|
size_t *bytes_written, size_t min_xfer, s32_t timeout)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_written, sizeof(*bytes_written)));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_READ((void *)data, bytes_to_write));
|
|
Z_OOPS(Z_SYSCALL_VERIFY(min_xfer <= bytes_to_write));
|
|
|
|
return z_impl_k_pipe_put((struct k_pipe *)pipe, (void *)data,
|
|
bytes_to_write, bytes_written, min_xfer,
|
|
timeout);
|
|
}
|
|
#include <syscalls/k_pipe_put_mrsh.c>
|
|
#endif
|
|
|
|
#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
|
|
void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block,
|
|
size_t bytes_to_write, struct k_sem *sem)
|
|
{
|
|
struct k_pipe_async *async_desc;
|
|
size_t dummy_bytes_written;
|
|
|
|
/* For simplicity, always allocate an asynchronous descriptor */
|
|
pipe_async_alloc(&async_desc);
|
|
|
|
async_desc->desc.block = &async_desc->desc.copy_block;
|
|
async_desc->desc.copy_block = *block;
|
|
async_desc->desc.sem = sem;
|
|
async_desc->thread.prio = k_thread_priority_get(_current);
|
|
#ifdef CONFIG_SMP
|
|
async_desc->thread.is_idle = 0;
|
|
#endif
|
|
|
|
(void) z_pipe_put_internal(pipe, async_desc, block->data,
|
|
bytes_to_write, &dummy_bytes_written,
|
|
bytes_to_write, K_FOREVER);
|
|
}
|
|
#endif
|