zephyr/drivers/modem/hl7800.c
Benedikt Schmidt ba49cb81f1 drivers: modem: fix thread function signatures
Fix thread function signatures to avoid stack corruption on thread exit.

Signed-off-by: Benedikt Schmidt <benedikt.schmidt@embedded-solutions.at>
2023-10-30 12:24:34 +01:00

6469 lines
162 KiB
C

/*
* Copyright (c) 2020 Laird Connectivity
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT swir_hl7800
#include <zephyr/logging/log.h>
#include <zephyr/logging/log_ctrl.h>
#define LOG_MODULE_NAME modem_hl7800
LOG_MODULE_REGISTER(LOG_MODULE_NAME, CONFIG_MODEM_LOG_LEVEL);
#include <zephyr/types.h>
#include <stddef.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/pm/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/sys/util.h>
#include <zephyr/net/net_context.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_offload.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/dns_resolve.h>
#include <zephyr/net/offloaded_netdev.h>
#if defined(CONFIG_NET_IPV6)
#include "ipv6.h"
#endif
#if defined(CONFIG_NET_IPV4)
#include "ipv4.h"
#endif
#if defined(CONFIG_NET_UDP)
#include "udp_internal.h"
#endif
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
#include <zephyr/fs/fs.h>
#endif
#include "modem_receiver.h"
#include <zephyr/drivers/modem/hl7800.h>
#define PREFIXED_SWITCH_CASE_RETURN_STRING(prefix, val) \
case prefix##_##val: { \
return #val; \
}
/* Uncomment the #define below to enable a hexdump of all incoming
* data from the modem receiver
*/
/* #define HL7800_ENABLE_VERBOSE_MODEM_RECV_HEXDUMP 1 */
#define HL7800_LOG_UNHANDLED_RX_MSGS 1
/* Uncomment the #define(s) below to enable extra debugging */
/* #define HL7800_RX_LOCK_LOG 1 */
/* #define HL7800_TX_LOCK_LOG 1 */
/* #define HL7800_IO_LOG 1 */
#define HL7800_RX_LOCK_DBG_LOG(fmt, ...) \
do { \
if (IS_ENABLED(HL7800_RX_LOCK_LOG)) { \
LOG_DBG(fmt, ##__VA_ARGS__); \
} \
} while (false)
#define HL7800_TX_LOCK_DBG_LOG(fmt, ...) \
do { \
if (IS_ENABLED(HL7800_TX_LOCK_LOG)) { \
LOG_DBG(fmt, ##__VA_ARGS__); \
} \
} while (false)
#define HL7800_IO_DBG_LOG(fmt, ...) \
do { \
if (IS_ENABLED(HL7800_IO_LOG)) { \
LOG_DBG(fmt, ##__VA_ARGS__); \
} \
} while (false)
#if ((LOG_LEVEL == LOG_LEVEL_DBG) && \
defined(CONFIG_MODEM_HL7800_LOW_POWER_MODE))
#define PRINT_AWAKE_MSG LOG_WRN("awake")
#define PRINT_NOT_AWAKE_MSG LOG_WRN("NOT awake")
#else
#define PRINT_AWAKE_MSG
#define PRINT_NOT_AWAKE_MSG
#endif
enum tcp_notif {
HL7800_TCP_NET_ERR,
HL7800_TCP_NO_SOCKS,
HL7800_TCP_MEM,
HL7800_TCP_DNS,
HL7800_TCP_DISCON,
HL7800_TCP_CONN,
HL7800_TCP_ERR,
HL7800_TCP_CLIENT_REQ,
HL7800_TCP_DATA_SND,
HL7800_TCP_ID,
HL7800_TCP_RUNNING,
HL7800_TCP_ALL_USED,
HL7800_TCP_TIMEOUT,
HL7800_TCP_SSL_CONN,
HL7800_TCP_SSL_INIT
};
enum udp_notif {
HL7800_UDP_NET_ERR = 0,
HL7800_UDP_NO_SOCKS = 1,
HL7800_UDP_MEM = 2,
HL7800_UDP_DNS = 3,
HL7800_UDP_CONN = 5,
HL7800_UDP_ERR = 6,
HL7800_UDP_DATA_SND = 8, /* this matches TCP_DATA_SND */
HL7800_UDP_ID = 9,
HL7800_UDP_RUNNING = 10,
HL7800_UDP_ALL_USED = 11
};
enum socket_state {
SOCK_IDLE,
SOCK_RX,
SOCK_TX,
SOCK_CONNECTED,
};
enum hl7800_lpm {
HL7800_LPM_NONE,
HL7800_LPM_EDRX,
HL7800_LPM_PSM,
};
/* pin settings */
enum mdm_control_pins {
MDM_RESET = 0,
MDM_WAKE,
MDM_PWR_ON,
MDM_FAST_SHUTD,
MDM_VGPIO,
MDM_UART_DSR,
MDM_UART_CTS,
MDM_GPIO6,
MAX_MDM_CONTROL_PINS,
};
enum net_operator_status { NO_OPERATOR, REGISTERED };
enum device_service_indications {
WDSI_PKG_DOWNLOADED = 3,
};
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
enum XMODEM_CONTROL_CHARACTERS {
XM_SOH = 0x01,
XM_SOH_1K = 0x02,
XM_EOT = 0x04,
XM_ACK = 0x06, /* 'R' */
XM_NACK = 0x15, /* 'N' */
XM_ETB = 0x17,
XM_CAN = 0x18,
XM_C = 0x43
};
#define XMODEM_DATA_SIZE 1024
#define XMODEM_PACKET_SIZE (XMODEM_DATA_SIZE + 4)
#define XMODEM_PAD_VALUE 26
struct xmodem_packet {
uint8_t preamble;
uint8_t id;
uint8_t id_complement;
uint8_t data[XMODEM_DATA_SIZE];
uint8_t crc;
};
#endif
#define MDM_UART_DEV DEVICE_DT_GET(DT_INST_BUS(0))
#define MDM_SEND_OK_ENABLED 0
#define MDM_SEND_OK_DISABLED 1
#define MDM_CMD_SEND_TIMEOUT K_SECONDS(6)
#define MDM_IP_SEND_RX_TIMEOUT K_SECONDS(62)
#define MDM_SOCK_NOTIF_DELAY K_MSEC(150)
#define MDM_CMD_CONN_TIMEOUT K_SECONDS(31)
#define MDM_MAX_DATA_LENGTH 1500
#define MDM_MTU 1500
#define MDM_MAX_RESP_SIZE 128
#define MDM_IP_INFO_RESP_SIZE 256
#define MDM_EID_LENGTH 33
#define MDM_CCID_RESP_MAX_SIZE (MDM_HL7800_ICCID_MAX_SIZE + MDM_EID_LENGTH)
#define MDM_HANDLER_MATCH_MAX_LEN 100
#define MDM_MAX_SOCKETS 6
/* Special value used to indicate that a socket is being created
* and that its actual ID hasn't been assigned yet.
*/
#define MDM_CREATE_SOCKET_ID (MDM_MAX_SOCKETS + 1)
#define BUF_ALLOC_TIMEOUT K_SECONDS(1)
#define SIZE_OF_NUL 1
#define SIZE_WITHOUT_NUL(v) (sizeof(v) - SIZE_OF_NUL)
#define CMD_HANDLER(cmd_, cb_) \
{ \
.cmd = cmd_, .cmd_len = (uint16_t)sizeof(cmd_) - 1, \
.func = on_cmd_##cb_ \
}
#define MDM_MANUFACTURER_LENGTH 16
#define MDM_MODEL_LENGTH 7
#define MDM_SN_RESPONSE_LENGTH (MDM_HL7800_SERIAL_NUMBER_SIZE + 7)
#define MDM_NETWORK_STATUS_LENGTH 45
#define MDM_TOP_BAND_SIZE 4
#define MDM_MIDDLE_BAND_SIZE 8
#define MDM_BOTTOM_BAND_SIZE 8
#define MDM_TOP_BAND_START_POSITION 2
#define MDM_MIDDLE_BAND_START_POSITION 6
#define MDM_BOTTOM_BAND_START_POSITION 14
#define MDM_BAND_BITMAP_STR_LENGTH_MAX \
(MDM_TOP_BAND_SIZE + MDM_MIDDLE_BAND_SIZE + MDM_BOTTOM_BAND_SIZE)
#define MDM_BAND_BITMAP_STR_LENGTH_MIN 1
#define MDM_DEFAULT_AT_CMD_RETRIES 3
#define MDM_WAKEUP_TIME K_SECONDS(12)
#define MDM_BOOT_TIME K_SECONDS(12)
#define MDM_WAKE_TO_CHECK_CTS_DELAY_MS K_MSEC(20)
#define MDM_WAIT_FOR_DATA_TIME K_MSEC(50)
#define MDM_RESET_LOW_TIME K_MSEC(50)
#define MDM_RESET_HIGH_TIME K_MSEC(10)
#define MDM_WAIT_FOR_DATA_RETRIES 3
#define RSSI_UNKNOWN -999
#define DNS_WORK_DELAY_SECS 1
#define IFACE_WORK_DELAY K_MSEC(500)
#define SOCKET_CLEANUP_WORK_DELAY K_MSEC(100)
#define WAIT_FOR_KSUP_RETRIES 5
#define CGCONTRDP_RESPONSE_NUM_DELIMS 7
#define COPS_RESPONSE_NUM_DELIMS 2
#define KCELLMEAS_RESPONSE_NUM_DELIMS 4
#define PROFILE_LINE_1 \
"E1 Q0 V1 X4 &C1 &D1 &R1 &S0 +IFC=2,2 &K3 +IPR=115200 +FCLASS0\r\n"
#define PROFILE_LINE_2 \
"S00:255 S01:255 S03:255 S04:255 S05:255 S07:255 S08:255 S10:255\r\n"
#define ADDRESS_FAMILY_IP "IP"
#define ADDRESS_FAMILY_IPV4 "IPV4"
#if defined(CONFIG_MODEM_HL7800_ADDRESS_FAMILY_IPV4V6)
#define MODEM_HL7800_ADDRESS_FAMILY "IPV4V6"
#elif defined(CONFIG_MODEM_HL7800_ADDRESS_FAMILY_IPV4)
#define MODEM_HL7800_ADDRESS_FAMILY ADDRESS_FAMILY_IPV4
#else
#define MODEM_HL7800_ADDRESS_FAMILY "IPV6"
#endif
#define MDM_HL7800_SOCKET_AF_IPV4 0
#define MDM_HL7800_SOCKET_AF_IPV6 1
#define SET_RAT_M1_CMD_LEGACY "AT+KSRAT=0"
#define SET_RAT_NB1_CMD_LEGACY "AT+KSRAT=1"
#define SET_RAT_M1_CMD "AT+KSRAT=0,1"
#define SET_RAT_NB1_CMD "AT+KSRAT=1,1"
#define NEW_RAT_CMD_MIN_VERSION "HL7800.4.5.4.0"
#define HL7800_VERSION_FORMAT "HL7800.%zu.%zu.%zu.%zu"
#define MAX_PROFILE_LINE_LENGTH \
MAX(sizeof(PROFILE_LINE_1), sizeof(PROFILE_LINE_2))
#define IPV6_ADDR_FORMAT "####:####:####:####:####:####:####:####"
#define HL7800_IPV6_ADDR_LEN \
sizeof("a01.a02.a03.a04.a05.a06.a07.a08.a09.a10.a11.a12.a13.a14.a15.a16")
#define MDM_ADDR_FAM_MAX_LEN sizeof("IPV4V6")
/* The ? can be a + or - */
static const char TIME_STRING_FORMAT[] = "\"yy/MM/dd,hh:mm:ss?zz\"";
#define TIME_STRING_DIGIT_STRLEN 2
#define TIME_STRING_SEPARATOR_STRLEN 1
#define TIME_STRING_PLUS_MINUS_INDEX (6 * 3)
#define TIME_STRING_FIRST_SEPARATOR_INDEX 0
#define TIME_STRING_FIRST_DIGIT_INDEX 1
#define TIME_STRING_TO_TM_STRUCT_YEAR_OFFSET (2000 - 1900)
/* Time structure min, max */
#define TM_YEAR_RANGE 0, 99
#define TM_MONTH_RANGE_PLUS_1 1, 12
#define TM_DAY_RANGE 1, 31
#define TM_HOUR_RANGE 0, 23
#define TM_MIN_RANGE 0, 59
#define TM_SEC_RANGE 0, 60 /* leap second */
#define QUARTER_HOUR_RANGE 0, 96
#define SECONDS_PER_QUARTER_HOUR (15 * 60)
#define SEND_AT_CMD_ONCE_EXPECT_OK(c) \
do { \
ret = send_at_cmd(NULL, (c), MDM_CMD_SEND_TIMEOUT, 0, false); \
if (ret < 0) { \
LOG_ERR("%s result:%d", (c), ret); \
goto error; \
} \
} while (false)
#define SEND_AT_CMD_IGNORE_ERROR(c) \
do { \
ret = send_at_cmd(NULL, (c), MDM_CMD_SEND_TIMEOUT, 0, false); \
if (ret < 0) { \
LOG_ERR("%s result:%d", (c), ret); \
} \
} while (false)
#define SEND_AT_CMD_EXPECT_OK(c) \
do { \
ret = send_at_cmd(NULL, (c), MDM_CMD_SEND_TIMEOUT, \
MDM_DEFAULT_AT_CMD_RETRIES, false); \
if (ret < 0) { \
LOG_ERR("%s result:%d", (c), ret); \
goto error; \
} \
} while (false)
/* Complex has "no_id_resp" set to true because the sending command
* is the command used to process the response
*/
#define SEND_COMPLEX_AT_CMD(c) \
do { \
ret = send_at_cmd(NULL, (c), MDM_CMD_SEND_TIMEOUT, \
MDM_DEFAULT_AT_CMD_RETRIES, true); \
if (ret < 0) { \
LOG_ERR("%s result:%d", (c), ret); \
goto error; \
} \
} while (false)
NET_BUF_POOL_DEFINE(mdm_recv_pool, CONFIG_MODEM_HL7800_RECV_BUF_CNT,
CONFIG_MODEM_HL7800_RECV_BUF_SIZE, 0, NULL);
static uint8_t mdm_recv_buf[MDM_MAX_DATA_LENGTH];
static K_SEM_DEFINE(hl7800_RX_lock_sem, 1, 1);
static K_SEM_DEFINE(hl7800_TX_lock_sem, 1, 1);
static K_SEM_DEFINE(cb_lock, 1, 1);
/* RX thread structures */
K_THREAD_STACK_DEFINE(hl7800_rx_stack, CONFIG_MODEM_HL7800_RX_STACK_SIZE);
struct k_thread hl7800_rx_thread;
#define RX_THREAD_PRIORITY K_PRIO_COOP(7)
/* RX thread work queue */
K_THREAD_STACK_DEFINE(hl7800_workq_stack,
CONFIG_MODEM_HL7800_RX_WORKQ_STACK_SIZE);
static struct k_work_q hl7800_workq;
#define WORKQ_PRIORITY K_PRIO_COOP(7)
static const char EOF_PATTERN[] = "--EOF--Pattern--";
static const char CONNECT_STRING[] = "CONNECT";
static const char OK_STRING[] = "OK";
struct hl7800_socket {
struct net_context *context;
sa_family_t family;
enum net_sock_type type;
enum net_ip_protocol ip_proto;
struct sockaddr src;
struct sockaddr dst;
bool created;
bool reconfig;
int socket_id;
int rx_size;
int error;
enum socket_state state;
/** semaphore */
struct k_sem sock_send_sem;
/** socket callbacks */
struct k_work recv_cb_work;
struct k_work rx_data_work;
struct k_work_delayable notif_work;
net_context_recv_cb_t recv_cb;
struct net_pkt *recv_pkt;
void *recv_user_data;
};
struct stale_socket {
int reserved; /* first word of queue data item reserved for the kernel */
enum net_sock_type type;
uint8_t id;
bool allocated;
};
#define NO_ID_RESP_CMD_MAX_LENGTH 32
struct hl7800_config {
struct gpio_dt_spec gpio[MAX_MDM_CONTROL_PINS];
};
struct hl7800_iface_ctx {
struct net_if *iface;
uint8_t mac_addr[6];
struct in_addr ipv4Addr, subnet, gateway, dns_v4;
#ifdef CONFIG_NET_IPV6
struct in6_addr ipv6Addr, dns_v6;
char dns_v6_string[HL7800_IPV6_ADDR_LEN];
#endif
bool restarting;
bool initialized;
bool wait_for_KSUP;
uint32_t wait_for_KSUP_tries;
bool reconfig_IP_connection;
char dns_v4_string[NET_IPV4_ADDR_LEN];
char no_id_resp_cmd[NO_ID_RESP_CMD_MAX_LENGTH];
bool search_no_id_resp;
/* GPIO PORT devices */
struct gpio_callback mdm_vgpio_cb;
struct gpio_callback mdm_uart_dsr_cb;
struct gpio_callback mdm_gpio6_cb;
struct gpio_callback mdm_uart_cts_cb;
int vgpio_state;
int dsr_state;
int gpio6_state;
int cts_state;
/* RX specific attributes */
struct mdm_receiver_context mdm_ctx;
/* socket data */
struct hl7800_socket sockets[MDM_MAX_SOCKETS];
int last_socket_id;
int last_error;
struct stale_socket stale_sockets[MDM_MAX_SOCKETS];
struct k_queue stale_socket_queue;
/* semaphores */
struct k_sem response_sem;
struct k_sem mdm_awake;
/* work */
struct k_work_delayable rssi_query_work;
struct k_work_delayable iface_status_work;
struct k_work_delayable dns_work;
struct k_work mdm_vgpio_work;
struct k_work_delayable mdm_reset_work;
struct k_work_delayable allow_sleep_work;
struct k_work_delayable delete_untracked_socket_work;
struct k_work mdm_pwr_off_work;
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
/* firmware update */
enum mdm_hl7800_fota_state fw_update_state;
struct fs_file_t fw_update_file;
struct xmodem_packet fw_packet;
uint32_t fw_packet_count;
int file_pos;
struct k_work finish_fw_update_work;
bool fw_updated;
#endif
/* modem info */
/* NOTE: make sure length is +1 for null char */
char mdm_manufacturer[MDM_MANUFACTURER_LENGTH];
char mdm_model[MDM_MODEL_LENGTH];
char mdm_revision[MDM_HL7800_REVISION_MAX_SIZE];
char mdm_imei[MDM_HL7800_IMEI_SIZE];
char mdm_sn[MDM_HL7800_SERIAL_NUMBER_SIZE];
char mdm_network_status[MDM_NETWORK_STATUS_LENGTH];
char mdm_iccid[MDM_HL7800_ICCID_MAX_SIZE];
enum mdm_hl7800_startup_state mdm_startup_state;
enum mdm_hl7800_radio_mode mdm_rat;
char mdm_active_bands_string[MDM_HL7800_LTE_BAND_STR_SIZE];
char mdm_bands_string[MDM_HL7800_LTE_BAND_STR_SIZE];
char mdm_imsi[MDM_HL7800_IMSI_MAX_STR_SIZE];
int mdm_rssi;
uint16_t mdm_bands_top;
uint32_t mdm_bands_middle;
uint32_t mdm_bands_bottom;
int32_t mdm_sinr;
bool mdm_echo_is_on;
struct mdm_hl7800_apn mdm_apn;
bool mdm_startup_reporting_on;
int device_services_ind;
bool new_rat_cmd_support;
uint8_t operator_index;
enum mdm_hl7800_functionality functionality;
char mdm_pdp_addr_fam[MDM_ADDR_FAM_MAX_LEN];
/* modem state */
bool allow_sleep;
bool uart_on;
enum mdm_hl7800_sleep desired_sleep_level;
enum mdm_hl7800_sleep sleep_state;
enum hl7800_lpm low_power_mode;
enum mdm_hl7800_network_state network_state;
bool network_dropped;
bool dns_ready;
enum net_operator_status operator_status;
struct tm local_time;
int32_t local_time_offset;
bool local_time_valid;
bool configured;
bool off;
void (*wake_up_callback)(int state);
void (*gpio6_callback)(int state);
void (*cts_callback)(int state);
#ifdef CONFIG_MODEM_HL7800_GPS
struct k_work_delayable gps_work;
uint32_t gps_query_location_rate_seconds;
#endif
};
struct cmd_handler {
const char *cmd;
uint16_t cmd_len;
bool (*func)(struct net_buf **buf, uint16_t len);
};
static sys_slist_t hl7800_event_callback_list =
SYS_SLIST_STATIC_INIT(&hl7800_event_callback_list);
const static struct hl7800_config hl7800_cfg = {
.gpio = {
GPIO_DT_SPEC_INST_GET(0, mdm_reset_gpios),
GPIO_DT_SPEC_INST_GET(0, mdm_wake_gpios),
GPIO_DT_SPEC_INST_GET(0, mdm_pwr_on_gpios),
GPIO_DT_SPEC_INST_GET(0, mdm_fast_shutd_gpios),
GPIO_DT_SPEC_INST_GET(0, mdm_vgpio_gpios),
GPIO_DT_SPEC_INST_GET(0, mdm_uart_dsr_gpios),
GPIO_DT_SPEC_INST_GET(0, mdm_uart_cts_gpios),
GPIO_DT_SPEC_INST_GET(0, mdm_gpio6_gpios),
},
};
static struct hl7800_iface_ctx iface_ctx;
static size_t hl7800_read_rx(struct net_buf **buf);
static char *get_network_state_string(enum mdm_hl7800_network_state state);
static char *get_startup_state_string(enum mdm_hl7800_startup_state state);
static char *get_sleep_state_string(enum mdm_hl7800_sleep state);
static void set_network_state(enum mdm_hl7800_network_state state);
static void set_startup_state(enum mdm_hl7800_startup_state state);
static void set_sleep_state(enum mdm_hl7800_sleep state);
static void generate_network_state_event(void);
static void generate_startup_state_event(void);
static void generate_sleep_state_event(void);
static int modem_boot_handler(char *reason);
static void mdm_vgpio_work_cb(struct k_work *item);
static void mdm_reset_work_callback(struct k_work *item);
static void mdm_power_off_work_callback(struct k_work *item);
static int write_apn(char *access_point_name);
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
static void mark_sockets_for_reconfig(void);
#endif
static void hl7800_build_mac(struct hl7800_iface_ctx *ictx);
static void rssi_query(void);
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
static void initialize_sleep_level(void);
static int set_sleep_level(void);
#endif
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
static char *get_fota_state_string(enum mdm_hl7800_fota_state state);
static void set_fota_state(enum mdm_hl7800_fota_state state);
static void generate_fota_state_event(void);
static void generate_fota_count_event(void);
#endif
static struct stale_socket *alloc_stale_socket(void)
{
struct stale_socket *sock = NULL;
for (int i = 0; i < MDM_MAX_SOCKETS; i++) {
if (!iface_ctx.stale_sockets[i].allocated) {
sock = &iface_ctx.stale_sockets[i];
sock->allocated = true;
break;
}
}
return sock;
}
static void free_stale_socket(struct stale_socket *sock)
{
if (sock != NULL) {
sock->allocated = false;
}
}
static int queue_stale_socket(enum net_sock_type type, uint8_t id)
{
int ret = 0;
struct stale_socket *sock = NULL;
sock = alloc_stale_socket();
if (sock != NULL) {
sock->type = type;
sock->id = id;
k_queue_append(&iface_ctx.stale_socket_queue, (void *)sock);
} else {
LOG_ERR("Could not alloc stale socket");
ret = -ENOMEM;
}
return ret;
}
static struct stale_socket *dequeue_stale_socket(void)
{
struct stale_socket *sock = NULL;
sock = (struct stale_socket *)k_queue_get(&iface_ctx.stale_socket_queue, K_NO_WAIT);
return sock;
}
static bool convert_time_string_to_struct(struct tm *tm, int32_t *offset,
char *time_string);
static int modem_reset_and_configure(void);
static int read_pin(int default_state, const struct gpio_dt_spec *spec)
{
int state = gpio_pin_get_raw(spec->port, spec->pin);
if (state < 0) {
LOG_ERR("Unable to read port: %s pin: %d status: %d",
spec->port->name, spec->pin, state);
state = default_state;
}
return state;
}
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
static bool is_cmd_ready(void)
{
iface_ctx.vgpio_state = read_pin(0, &hl7800_cfg.gpio[MDM_VGPIO]);
iface_ctx.gpio6_state = read_pin(0, &hl7800_cfg.gpio[MDM_GPIO6]);
iface_ctx.cts_state = read_pin(1, &hl7800_cfg.gpio[MDM_UART_CTS]);
return iface_ctx.vgpio_state && iface_ctx.gpio6_state && !iface_ctx.cts_state;
}
#endif
/**
* The definition of awake is that the HL7800
* is ready to receive AT commands successfully
*/
static void check_hl7800_awake(void)
{
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
bool is_cmd_rdy = is_cmd_ready();
if (is_cmd_rdy && (iface_ctx.sleep_state != HL7800_SLEEP_AWAKE) &&
!iface_ctx.allow_sleep && !iface_ctx.wait_for_KSUP) {
PRINT_AWAKE_MSG;
set_sleep_state(HL7800_SLEEP_AWAKE);
k_sem_give(&iface_ctx.mdm_awake);
} else if (!is_cmd_rdy && iface_ctx.sleep_state == HL7800_SLEEP_AWAKE &&
iface_ctx.allow_sleep) {
PRINT_NOT_AWAKE_MSG;
if (iface_ctx.desired_sleep_level == HL7800_SLEEP_HIBERNATE ||
iface_ctx.desired_sleep_level == HL7800_SLEEP_LITE_HIBERNATE) {
/* If the device is sleeping (not ready to receive commands)
* then the device may send +KSUP when waking up.
* We should wait for it.
*/
iface_ctx.wait_for_KSUP = true;
iface_ctx.wait_for_KSUP_tries = 0;
set_sleep_state(iface_ctx.desired_sleep_level);
} else if (iface_ctx.desired_sleep_level == HL7800_SLEEP_SLEEP) {
set_sleep_state(HL7800_SLEEP_SLEEP);
}
}
#endif
}
static int hl7800_RX_lock(void)
{
HL7800_RX_LOCK_DBG_LOG("Locking RX [%p]...", k_current_get());
int rc = k_sem_take(&hl7800_RX_lock_sem, K_FOREVER);
if (rc != 0) {
LOG_ERR("Unable to lock hl7800 (%d)", rc);
} else {
HL7800_RX_LOCK_DBG_LOG("Locked RX [%p]", k_current_get());
}
return rc;
}
static void hl7800_RX_unlock(void)
{
HL7800_RX_LOCK_DBG_LOG("UNLocking RX [%p]...", k_current_get());
k_sem_give(&hl7800_RX_lock_sem);
HL7800_RX_LOCK_DBG_LOG("UNLocked RX [%p]", k_current_get());
}
static bool hl7800_RX_locked(void)
{
if (k_sem_count_get(&hl7800_RX_lock_sem) == 0) {
return true;
} else {
return false;
}
}
static int hl7800_TX_lock(void)
{
HL7800_TX_LOCK_DBG_LOG("Locking TX [%p]...", k_current_get());
int rc = k_sem_take(&hl7800_TX_lock_sem, K_FOREVER);
if (rc != 0) {
LOG_ERR("Unable to lock hl7800 (%d)", rc);
} else {
HL7800_TX_LOCK_DBG_LOG("Locked TX [%p]", k_current_get());
}
return rc;
}
static void hl7800_TX_unlock(void)
{
HL7800_TX_LOCK_DBG_LOG("UNLocking TX [%p]...", k_current_get());
k_sem_give(&hl7800_TX_lock_sem);
HL7800_TX_LOCK_DBG_LOG("UNLocked TX [%p]", k_current_get());
}
static bool hl7800_TX_locked(void)
{
if (k_sem_count_get(&hl7800_TX_lock_sem) == 0) {
return true;
} else {
return false;
}
}
static void hl7800_lock(void)
{
hl7800_TX_lock();
hl7800_RX_lock();
}
static void hl7800_unlock(void)
{
hl7800_RX_unlock();
hl7800_TX_unlock();
}
static struct hl7800_socket *socket_get(void)
{
int i;
struct hl7800_socket *sock = NULL;
for (i = 0; i < MDM_MAX_SOCKETS; i++) {
if (!iface_ctx.sockets[i].context) {
sock = &iface_ctx.sockets[i];
break;
}
}
return sock;
}
static struct hl7800_socket *socket_from_id(int socket_id)
{
int i;
struct hl7800_socket *sock = NULL;
if (socket_id < 1) {
return NULL;
}
for (i = 0; i < MDM_MAX_SOCKETS; i++) {
if (iface_ctx.sockets[i].socket_id == socket_id) {
sock = &iface_ctx.sockets[i];
break;
}
}
return sock;
}
static void socket_put(struct hl7800_socket *sock)
{
if (!sock) {
return;
}
sock->context = NULL;
sock->socket_id = -1;
sock->created = false;
sock->reconfig = false;
sock->error = 0;
sock->rx_size = 0;
sock->state = SOCK_IDLE;
(void)memset(&sock->src, 0, sizeof(struct sockaddr));
(void)memset(&sock->dst, 0, sizeof(struct sockaddr));
}
char *hl7800_sprint_ip_addr(const struct sockaddr *addr)
{
static char buf[NET_IPV6_ADDR_LEN];
#if defined(CONFIG_NET_IPV6)
if (addr->sa_family == AF_INET6) {
return net_addr_ntop(AF_INET6, &net_sin6(addr)->sin6_addr, buf,
sizeof(buf));
} else
#endif
#if defined(CONFIG_NET_IPV4)
if (addr->sa_family == AF_INET) {
return net_addr_ntop(AF_INET, &net_sin(addr)->sin_addr, buf,
sizeof(buf));
} else
#endif
{
LOG_ERR("Unknown IP address family:%d", addr->sa_family);
return NULL;
}
}
void mdm_hl7800_register_wake_test_point_callback(void (*func)(int state))
{
iface_ctx.wake_up_callback = func;
}
void mdm_hl7800_register_gpio6_callback(void (*func)(int state))
{
iface_ctx.gpio6_callback = func;
}
void mdm_hl7800_register_cts_callback(void (*func)(int state))
{
iface_ctx.cts_callback = func;
}
static void modem_assert_wake(bool assert)
{
int state;
if (assert) {
HL7800_IO_DBG_LOG("MDM_WAKE_PIN -> ASSERTED");
state = 1;
} else {
HL7800_IO_DBG_LOG("MDM_WAKE_PIN -> NOT_ASSERTED");
state = 0;
}
gpio_pin_set_dt(&hl7800_cfg.gpio[MDM_WAKE], state);
if (iface_ctx.wake_up_callback != NULL) {
iface_ctx.wake_up_callback(state);
}
}
static void modem_assert_pwr_on(bool assert)
{
if (assert) {
HL7800_IO_DBG_LOG("MDM_PWR_ON -> ASSERTED");
gpio_pin_set_dt(&hl7800_cfg.gpio[MDM_PWR_ON], 1);
} else {
HL7800_IO_DBG_LOG("MDM_PWR_ON -> NOT_ASSERTED");
gpio_pin_set_dt(&hl7800_cfg.gpio[MDM_PWR_ON], 0);
}
}
static void modem_assert_fast_shutd(bool assert)
{
if (assert) {
HL7800_IO_DBG_LOG("MDM_FAST_SHUTD -> ASSERTED");
gpio_pin_set_dt(&hl7800_cfg.gpio[MDM_FAST_SHUTD], 1);
} else {
HL7800_IO_DBG_LOG("MDM_FAST_SHUTD -> NOT_ASSERTED");
gpio_pin_set_dt(&hl7800_cfg.gpio[MDM_FAST_SHUTD], 0);
}
}
static void allow_sleep_work_callback(struct k_work *item)
{
ARG_UNUSED(item);
LOG_DBG("Allow sleep");
iface_ctx.allow_sleep = true;
set_sleep_state(iface_ctx.desired_sleep_level);
modem_assert_wake(false);
}
static void allow_sleep(bool allow)
{
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
if (allow) {
k_work_reschedule_for_queue(&hl7800_workq,
&iface_ctx.allow_sleep_work,
K_MSEC(CONFIG_MODEM_HL7800_ALLOW_SLEEP_DELAY_MS));
} else {
LOG_DBG("Keep awake");
k_work_cancel_delayable(&iface_ctx.allow_sleep_work);
iface_ctx.allow_sleep = false;
modem_assert_wake(true);
}
#endif
}
static void event_handler(enum mdm_hl7800_event event, void *event_data)
{
sys_snode_t *node;
struct mdm_hl7800_callback_agent *agent;
k_sem_take(&cb_lock, K_FOREVER);
SYS_SLIST_FOR_EACH_NODE(&hl7800_event_callback_list, node) {
agent = CONTAINER_OF(node, struct mdm_hl7800_callback_agent, node);
if (agent->event_callback != NULL) {
agent->event_callback(event, event_data);
}
}
k_sem_give(&cb_lock);
}
void mdm_hl7800_get_signal_quality(int *rsrp, int *sinr)
{
if (CONFIG_MODEM_HL7800_RSSI_RATE_SECONDS == 0) {
rssi_query();
}
*rsrp = iface_ctx.mdm_rssi;
*sinr = iface_ctx.mdm_sinr;
}
void mdm_hl7800_wakeup(bool wakeup)
{
allow_sleep(!wakeup);
}
/* Send an AT command with a series of response handlers */
static int send_at_cmd(struct hl7800_socket *sock, const uint8_t *data,
k_timeout_t timeout, int retries, bool no_id_resp)
{
int ret = 0;
iface_ctx.last_error = 0;
do {
if (!sock) {
k_sem_reset(&iface_ctx.response_sem);
iface_ctx.last_socket_id = 0;
} else {
sock->error = 0;
k_sem_reset(&sock->sock_send_sem);
iface_ctx.last_socket_id = sock->socket_id;
}
if (no_id_resp) {
strncpy(iface_ctx.no_id_resp_cmd, data,
sizeof(iface_ctx.no_id_resp_cmd) - 1);
iface_ctx.search_no_id_resp = true;
}
LOG_DBG("OUT: [%s]", (char *)data);
mdm_receiver_send(&iface_ctx.mdm_ctx, data, strlen(data));
mdm_receiver_send(&iface_ctx.mdm_ctx, "\r", 1);
if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
goto done;
}
if (!sock) {
ret = k_sem_take(&iface_ctx.response_sem, timeout);
} else {
ret = k_sem_take(&sock->sock_send_sem, timeout);
}
if (ret == 0) {
if (sock) {
ret = sock->error;
} else {
ret = iface_ctx.last_error;
}
} else if (ret == -EAGAIN) {
ret = -ETIMEDOUT;
}
retries--;
if (retries < 0) {
retries = 0;
}
} while (ret != 0 && retries > 0);
done:
iface_ctx.search_no_id_resp = false;
return ret;
}
static int wakeup_hl7800(void)
{
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
int ret;
allow_sleep(false);
/* If modem is in sleep mode (not hibernate),
* then it can respond in ~10 ms.
*/
if (iface_ctx.desired_sleep_level == HL7800_SLEEP_SLEEP) {
k_sleep(MDM_WAKE_TO_CHECK_CTS_DELAY_MS);
}
if (!is_cmd_ready()) {
LOG_DBG("Waiting to wakeup");
ret = k_sem_take(&iface_ctx.mdm_awake, MDM_WAKEUP_TIME);
if (ret) {
LOG_DBG("Err waiting for wakeup: %d", ret);
}
}
#endif
return 0;
}
int32_t mdm_hl7800_send_at_cmd(const uint8_t *data)
{
int ret;
if (!data) {
return -EINVAL;
}
hl7800_lock();
wakeup_hl7800();
iface_ctx.last_socket_id = 0;
ret = send_at_cmd(NULL, data, MDM_CMD_SEND_TIMEOUT, 0, false);
allow_sleep(true);
hl7800_unlock();
return ret;
}
/* The access point name (and username and password) are stored in the modem's
* non-volatile memory.
*/
int32_t mdm_hl7800_update_apn(char *access_point_name)
{
int ret = -EINVAL;
hl7800_lock();
wakeup_hl7800();
iface_ctx.last_socket_id = 0;
ret = write_apn(access_point_name);
allow_sleep(true);
hl7800_unlock();
if (ret >= 0) {
/* After a reset the APN will be re-read from the modem
* and an event will be generated.
*/
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.mdm_reset_work,
K_NO_WAIT);
}
return ret;
}
bool mdm_hl7800_valid_rat(uint8_t value)
{
if ((value == MDM_RAT_CAT_M1) || (value == MDM_RAT_CAT_NB1)) {
return true;
}
return false;
}
int32_t mdm_hl7800_update_rat(enum mdm_hl7800_radio_mode value)
{
int ret = -EINVAL;
if (value == iface_ctx.mdm_rat) {
/* The set command will fail (in the modem)
* if the RAT isn't different.
*/
return 0;
} else if (!mdm_hl7800_valid_rat(value)) {
return ret;
}
hl7800_lock();
wakeup_hl7800();
iface_ctx.last_socket_id = 0;
if (value == MDM_RAT_CAT_M1) {
if (iface_ctx.new_rat_cmd_support) {
SEND_AT_CMD_ONCE_EXPECT_OK(SET_RAT_M1_CMD);
} else {
SEND_AT_CMD_ONCE_EXPECT_OK(SET_RAT_M1_CMD_LEGACY);
}
} else { /* MDM_RAT_CAT_NB1 */
if (iface_ctx.new_rat_cmd_support) {
SEND_AT_CMD_ONCE_EXPECT_OK(SET_RAT_NB1_CMD);
} else {
SEND_AT_CMD_ONCE_EXPECT_OK(SET_RAT_NB1_CMD_LEGACY);
}
}
error:
allow_sleep(true);
hl7800_unlock();
/* Changing the RAT causes the modem to reset.
* A reset and reconfigure ensures the modem configuration and
* state are valid.
*/
if (ret >= 0) {
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.mdm_reset_work, K_NO_WAIT);
}
return ret;
}
int32_t mdm_hl7800_get_local_time(struct tm *tm, int32_t *offset)
{
int ret;
iface_ctx.local_time_valid = false;
hl7800_lock();
wakeup_hl7800();
iface_ctx.last_socket_id = 0;
ret = send_at_cmd(NULL, "AT+CCLK?", MDM_CMD_SEND_TIMEOUT, 0, false);
allow_sleep(true);
if (iface_ctx.local_time_valid) {
memcpy(tm, &iface_ctx.local_time, sizeof(struct tm));
memcpy(offset, &iface_ctx.local_time_offset, sizeof(*offset));
} else {
ret = -EIO;
}
hl7800_unlock();
return ret;
}
int32_t mdm_hl7800_get_operator_index(void)
{
int ret;
hl7800_lock();
wakeup_hl7800();
iface_ctx.last_socket_id = 0;
ret = send_at_cmd(NULL, "AT+KCARRIERCFG?", MDM_CMD_SEND_TIMEOUT, 0,
false);
allow_sleep(true);
hl7800_unlock();
if (ret < 0) {
return ret;
} else {
return iface_ctx.operator_index;
}
}
int32_t mdm_hl7800_get_functionality(void)
{
int ret;
hl7800_lock();
wakeup_hl7800();
iface_ctx.last_socket_id = 0;
ret = send_at_cmd(NULL, "AT+CFUN?", MDM_CMD_SEND_TIMEOUT, 0, false);
allow_sleep(true);
hl7800_unlock();
if (ret < 0) {
return ret;
} else {
return iface_ctx.functionality;
}
}
int32_t mdm_hl7800_set_functionality(enum mdm_hl7800_functionality mode)
{
int ret;
char buf[sizeof("AT+CFUN=###,0")] = { 0 };
hl7800_lock();
wakeup_hl7800();
snprintk(buf, sizeof(buf), "AT+CFUN=%u,0", mode);
iface_ctx.last_socket_id = 0;
ret = send_at_cmd(NULL, buf, MDM_CMD_SEND_TIMEOUT,
MDM_DEFAULT_AT_CMD_RETRIES, false);
allow_sleep(true);
hl7800_unlock();
return ret;
}
#ifdef CONFIG_MODEM_HL7800_GPS
int32_t mdm_hl7800_set_gps_rate(uint32_t rate)
{
int ret = -1;
hl7800_lock();
wakeup_hl7800();
iface_ctx.gps_query_location_rate_seconds = rate;
/* Stopping first allows changing the rate between two non-zero values.
* Ignore error if GNSS isn't running.
*/
SEND_AT_CMD_IGNORE_ERROR("AT+GNSSSTOP");
if (rate == 0) {
SEND_AT_CMD_EXPECT_OK("AT+CFUN=1,0");
} else {
/* Navigation doesn't work when LTE is on. */
SEND_AT_CMD_EXPECT_OK("AT+CFUN=4,0");
SEND_AT_CMD_EXPECT_OK("AT+GNSSCONF=1,1");
if (IS_ENABLED(CONFIG_MODEM_HL7800_USE_GLONASS)) {
SEND_AT_CMD_EXPECT_OK("AT+GNSSCONF=10,1");
}
/* Enable all NMEA sentences */
SEND_AT_CMD_EXPECT_OK("AT+GNSSNMEA=0,1000,0,1FF");
/* Enable GPS */
SEND_AT_CMD_EXPECT_OK("AT+GNSSSTART=0");
}
error:
if (rate && ret == 0) {
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.gps_work,
K_SECONDS(iface_ctx.gps_query_location_rate_seconds));
} else {
k_work_cancel_delayable(&iface_ctx.gps_work);
}
LOG_DBG("GPS status: %d rate: %u", ret, rate);
allow_sleep(true);
hl7800_unlock();
return ret;
}
#endif /* CONFIG_MODEM_HL7800_GPS */
#ifdef CONFIG_MODEM_HL7800_POLTE
int32_t mdm_hl7800_polte_register(void)
{
int ret = -1;
hl7800_lock();
wakeup_hl7800();
/* register for events */
SEND_AT_CMD_EXPECT_OK("AT%POLTEEV=\"REGISTER\",1");
SEND_AT_CMD_EXPECT_OK("AT%POLTEEV=\"LOCATION\",1");
/* register with polte.io */
SEND_AT_CMD_EXPECT_OK("AT%POLTECMD=\"REGISTER\"");
error:
LOG_DBG("PoLTE register status: %d", ret);
allow_sleep(true);
hl7800_unlock();
return ret;
}
int32_t mdm_hl7800_polte_enable(char *user, char *password)
{
int ret = -1;
char buf[sizeof(MDM_HL7800_SET_POLTE_USER_AND_PASSWORD_FMT_STR) +
MDM_HL7800_MAX_POLTE_USER_ID_SIZE + MDM_HL7800_MAX_POLTE_PASSWORD_SIZE] = { 0 };
hl7800_lock();
wakeup_hl7800();
/* register for events */
SEND_AT_CMD_EXPECT_OK("AT%POLTEEV=\"REGISTER\",1");
SEND_AT_CMD_EXPECT_OK("AT%POLTEEV=\"LOCATION\",1");
/* restore user and password (not saved in NV by modem) */
snprintk(buf, sizeof(buf), MDM_HL7800_SET_POLTE_USER_AND_PASSWORD_FMT_STR, user, password);
ret = send_at_cmd(NULL, buf, MDM_CMD_SEND_TIMEOUT, MDM_DEFAULT_AT_CMD_RETRIES, false);
error:
LOG_DBG("PoLTE register status: %d", ret);
allow_sleep(true);
hl7800_unlock();
return ret;
}
int32_t mdm_hl7800_polte_locate(void)
{
int ret = -1;
hl7800_lock();
wakeup_hl7800();
SEND_AT_CMD_EXPECT_OK("AT%POLTECMD=\"LOCATE\",2,1");
error:
LOG_DBG("PoLTE locate status: %d", ret);
allow_sleep(true);
hl7800_unlock();
return ret;
}
#endif /* CONFIG_MODEM_HL7800_POLTE */
/**
* @brief Perform a site survey.
*
*/
int32_t mdm_hl7800_perform_site_survey(void)
{
int ret;
hl7800_lock();
wakeup_hl7800();
ret = send_at_cmd(NULL, "at%meas=\"97\"", MDM_CMD_SEND_TIMEOUT, 0, false);
allow_sleep(true);
hl7800_unlock();
return ret;
}
void mdm_hl7800_generate_status_events(void)
{
hl7800_lock();
generate_startup_state_event();
generate_network_state_event();
generate_sleep_state_event();
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
generate_fota_state_event();
#endif
event_handler(HL7800_EVENT_RSSI, &iface_ctx.mdm_rssi);
event_handler(HL7800_EVENT_SINR, &iface_ctx.mdm_sinr);
event_handler(HL7800_EVENT_APN_UPDATE, &iface_ctx.mdm_apn);
event_handler(HL7800_EVENT_RAT, &iface_ctx.mdm_rat);
event_handler(HL7800_EVENT_BANDS, iface_ctx.mdm_bands_string);
event_handler(HL7800_EVENT_ACTIVE_BANDS, iface_ctx.mdm_active_bands_string);
event_handler(HL7800_EVENT_REVISION, iface_ctx.mdm_revision);
hl7800_unlock();
}
uint32_t mdm_hl7800_log_filter_set(uint32_t level)
{
uint32_t new_log_level = 0;
#ifdef CONFIG_LOG_RUNTIME_FILTERING
new_log_level =
log_filter_set(NULL, Z_LOG_LOCAL_DOMAIN_ID,
log_source_id_get(STRINGIFY(LOG_MODULE_NAME)),
level);
#endif
return new_log_level;
}
static int send_data(struct hl7800_socket *sock, struct net_pkt *pkt)
{
int ret;
struct net_buf *frag;
char dst_addr[NET_IPV6_ADDR_LEN];
char buf[sizeof("AT+KUDPSND=##,\"" IPV6_ADDR_FORMAT "\",#####,####")];
size_t send_len, actual_send_len;
send_len = 0, actual_send_len = 0;
if (!sock) {
return -EINVAL;
}
sock->error = 0;
sock->state = SOCK_TX;
frag = pkt->frags;
send_len = net_buf_frags_len(frag);
/* start sending data */
k_sem_reset(&sock->sock_send_sem);
if (sock->type == SOCK_STREAM) {
snprintk(buf, sizeof(buf), "AT+KTCPSND=%d,%zu", sock->socket_id,
send_len);
} else {
if (!net_addr_ntop(sock->family, &net_sin(&sock->dst)->sin_addr,
dst_addr, sizeof(dst_addr))) {
LOG_ERR("Invalid dst addr");
return -EINVAL;
}
snprintk(buf, sizeof(buf), "AT+KUDPSND=%d,\"%s\",%u,%zu",
sock->socket_id, dst_addr,
net_sin(&sock->dst)->sin_port, send_len);
}
send_at_cmd(sock, buf, K_NO_WAIT, 0, false);
/* wait for CONNECT or error */
ret = k_sem_take(&sock->sock_send_sem, MDM_IP_SEND_RX_TIMEOUT);
if (ret) {
LOG_ERR("Err waiting for CONNECT (%d)", ret);
goto done;
}
/* check for error */
if (sock->error != 0) {
ret = sock->error;
LOG_ERR("AT+K**PSND (%d)", ret);
goto done;
}
/* Loop through packet data and send */
while (frag) {
actual_send_len += frag->len;
mdm_receiver_send(&iface_ctx.mdm_ctx, frag->data, frag->len);
frag = frag->frags;
}
if (actual_send_len != send_len) {
LOG_WRN("AT+K**PSND act: %zd exp: %zd", actual_send_len,
send_len);
}
LOG_DBG("Sent %zu bytes", actual_send_len);
/* Send EOF pattern to terminate data */
k_sem_reset(&sock->sock_send_sem);
mdm_receiver_send(&iface_ctx.mdm_ctx, EOF_PATTERN, strlen(EOF_PATTERN));
ret = k_sem_take(&sock->sock_send_sem, MDM_IP_SEND_RX_TIMEOUT);
if (ret == 0) {
ret = sock->error;
} else if (ret == -EAGAIN) {
ret = -ETIMEDOUT;
}
done:
if (sock->type == SOCK_STREAM) {
if (sock->error == 0) {
sock->state = SOCK_CONNECTED;
}
} else {
sock->state = SOCK_IDLE;
}
return ret;
}
/*** NET_BUF HELPERS ***/
static bool is_crlf(uint8_t c)
{
if (c == '\n' || c == '\r') {
return true;
} else {
return false;
}
}
static void net_buf_skipcrlf(struct net_buf **buf)
{
/* chop off any /n or /r */
while (*buf && is_crlf(*(*buf)->data)) {
net_buf_pull_u8(*buf);
if (!(*buf)->len) {
*buf = net_buf_frag_del(NULL, *buf);
}
}
}
static uint16_t net_buf_findcrlf(struct net_buf *buf, struct net_buf **frag)
{
uint16_t len = 0U, pos = 0U;
while (buf && !is_crlf(*(buf->data + pos))) {
if (pos + 1 >= buf->len) {
len += buf->len;
buf = buf->frags;
pos = 0U;
} else {
pos++;
}
}
if (buf && is_crlf(*(buf->data + pos))) {
len += pos;
*frag = buf;
return len;
}
return 0;
}
static uint8_t net_buf_get_u8(struct net_buf **buf)
{
uint8_t val = net_buf_pull_u8(*buf);
if (!(*buf)->len) {
*buf = net_buf_frag_del(NULL, *buf);
}
return val;
}
static uint32_t net_buf_remove(struct net_buf **buf, uint32_t len)
{
uint32_t to_remove;
uint32_t removed = 0;
while (*buf && len > 0) {
to_remove = (*buf)->len;
if (to_remove > len) {
to_remove = len;
}
net_buf_pull(*buf, to_remove);
removed += to_remove;
len -= to_remove;
if (!(*buf)->len) {
*buf = net_buf_frag_del(NULL, *buf);
}
}
return removed;
}
/*** UDP / TCP Helper Function ***/
/* Setup IP header data to be used by some network applications.
* While much is dummy data, some fields such as dst, port and family are
* important.
* Return the IP + protocol header length.
*/
static int pkt_setup_ip_data(struct net_pkt *pkt, struct hl7800_socket *sock)
{
int hdr_len = 0;
uint16_t src_port = 0U, dst_port = 0U;
#if defined(CONFIG_NET_TCP)
struct net_tcp_hdr *tcp;
#endif
#if defined(CONFIG_NET_IPV6)
if (net_pkt_family(pkt) == AF_INET6) {
if (net_ipv6_create(
pkt,
&((struct sockaddr_in6 *)&sock->dst)->sin6_addr,
&((struct sockaddr_in6 *)&sock->src)->sin6_addr)) {
return -1;
}
src_port = ntohs(net_sin6(&sock->src)->sin6_port);
dst_port = ntohs(net_sin6(&sock->dst)->sin6_port);
hdr_len = sizeof(struct net_ipv6_hdr);
}
#endif
#if defined(CONFIG_NET_IPV4)
if (net_pkt_family(pkt) == AF_INET) {
if (net_ipv4_create(
pkt, &((struct sockaddr_in *)&sock->dst)->sin_addr,
&((struct sockaddr_in *)&sock->src)->sin_addr)) {
return -1;
}
src_port = ntohs(net_sin(&sock->src)->sin_port);
dst_port = ntohs(net_sin(&sock->dst)->sin_port);
hdr_len = sizeof(struct net_ipv4_hdr);
}
#endif
#if defined(CONFIG_NET_UDP)
if (sock->ip_proto == IPPROTO_UDP) {
if (net_udp_create(pkt, dst_port, src_port)) {
return -1;
}
hdr_len += NET_UDPH_LEN;
}
#endif
#if defined(CONFIG_NET_TCP)
if (sock->ip_proto == IPPROTO_TCP) {
NET_PKT_DATA_ACCESS_DEFINE(tcp_access, struct net_tcp_hdr);
tcp = (struct net_tcp_hdr *)net_pkt_get_data(pkt, &tcp_access);
if (!tcp) {
return -1;
}
(void)memset(tcp, 0, NET_TCPH_LEN);
/* Setup TCP header */
tcp->src_port = dst_port;
tcp->dst_port = src_port;
if (net_pkt_set_data(pkt, &tcp_access)) {
return -1;
}
hdr_len += NET_TCPH_LEN;
}
#endif /* CONFIG_NET_TCP */
return hdr_len;
}
/*** MODEM RESPONSE HANDLERS ***/
static uint32_t wait_for_modem_data(struct net_buf **buf, uint32_t current_len,
uint32_t expected_len)
{
uint32_t waitForDataTries = 0;
while ((current_len < expected_len) &&
(waitForDataTries < MDM_WAIT_FOR_DATA_RETRIES)) {
LOG_DBG("cur:%d, exp:%d", current_len, expected_len);
k_sleep(MDM_WAIT_FOR_DATA_TIME);
current_len += hl7800_read_rx(buf);
waitForDataTries++;
}
return current_len;
}
static uint32_t wait_for_modem_data_and_newline(struct net_buf **buf,
uint32_t current_len,
uint32_t expected_len)
{
return wait_for_modem_data(buf, current_len,
(expected_len + strlen("\r\n")));
}
/* Handler: AT+CGMI */
static bool on_cmd_atcmdinfo_manufacturer(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
size_t out_len;
int len_no_null = MDM_MANUFACTURER_LENGTH - 1;
/* make sure revision data is received
* waiting for: Sierra Wireless\r\n
*/
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_MANUFACTURER_LENGTH);
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find mfg end");
goto done;
}
if (len < len_no_null) {
LOG_WRN("mfg too short (len:%d)", len);
} else if (len > len_no_null) {
LOG_WRN("mfg too long (len:%d)", len);
len = MDM_MANUFACTURER_LENGTH;
}
out_len = net_buf_linearize(iface_ctx.mdm_manufacturer,
sizeof(iface_ctx.mdm_manufacturer) - 1, *buf, 0,
len);
iface_ctx.mdm_manufacturer[out_len] = 0;
LOG_INF("Manufacturer: %s", iface_ctx.mdm_manufacturer);
done:
return true;
}
/* Handler: AT+CGMM */
static bool on_cmd_atcmdinfo_model(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
size_t out_len;
int len_no_null = MDM_MODEL_LENGTH - 1;
/* make sure model data is received
* waiting for: HL7800\r\n
*/
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_MODEL_LENGTH);
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find model end");
goto done;
}
if (len < len_no_null) {
LOG_WRN("model too short (len:%d)", len);
} else if (len > len_no_null) {
LOG_WRN("model too long (len:%d)", len);
len = MDM_MODEL_LENGTH;
}
out_len = net_buf_linearize(iface_ctx.mdm_model, sizeof(iface_ctx.mdm_model) - 1,
*buf, 0, len);
iface_ctx.mdm_model[out_len] = 0;
LOG_INF("Model: %s", iface_ctx.mdm_model);
done:
return true;
}
/* Handler: AT+CGMR */
static bool on_cmd_atcmdinfo_revision(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
size_t out_len;
/* make sure revision data is received
* waiting for something like: AHL7800.1.2.3.1.20171211\r\n
*/
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_HL7800_REVISION_MAX_SIZE);
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find rev end");
goto done;
}
if (len == 0) {
LOG_WRN("revision not found");
} else if (len > MDM_HL7800_REVISION_MAX_STRLEN) {
LOG_WRN("revision too long (len:%d)", len);
len = MDM_HL7800_REVISION_MAX_STRLEN;
}
out_len = net_buf_linearize(
iface_ctx.mdm_revision, sizeof(iface_ctx.mdm_revision) - 1, *buf, 0, len);
iface_ctx.mdm_revision[out_len] = 0;
LOG_INF("Revision: %s", iface_ctx.mdm_revision);
event_handler(HL7800_EVENT_REVISION, iface_ctx.mdm_revision);
done:
return true;
}
/* Handler: AT+CGSN */
static bool on_cmd_atcmdinfo_imei(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
size_t out_len;
/* make sure IMEI data is received
* waiting for: ###############\r\n
*/
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_HL7800_IMEI_SIZE);
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find IMEI end");
goto done;
}
if (len < MDM_HL7800_IMEI_STRLEN) {
LOG_WRN("IMEI too short (len:%d)", len);
} else if (len > MDM_HL7800_IMEI_STRLEN) {
LOG_WRN("IMEI too long (len:%d)", len);
len = MDM_HL7800_IMEI_STRLEN;
}
out_len = net_buf_linearize(iface_ctx.mdm_imei, sizeof(iface_ctx.mdm_imei) - 1,
*buf, 0, len);
iface_ctx.mdm_imei[out_len] = 0;
LOG_INF("IMEI: %s", iface_ctx.mdm_imei);
done:
return true;
}
/* Handler: +CCID: <ICCID>,<EID>
* NOTE: EID will only be present for eSIM
*/
static bool on_cmd_atcmdinfo_iccid(struct net_buf **buf, uint16_t len)
{
char value[MDM_CCID_RESP_MAX_SIZE];
char *delim;
int iccid_len;
size_t out_len;
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
LOG_DBG("+CCID: %s", value);
if (len > MDM_HL7800_ICCID_MAX_STRLEN) {
delim = strchr(value, ',');
if (!delim) {
LOG_ERR("Could not process +CCID");
return true;
}
/* Replace ',' with null so value contains two null terminated strings */
*delim = 0;
LOG_INF("EID: %s", delim + 1);
}
iccid_len = strlen(value);
strncpy(iface_ctx.mdm_iccid, value, sizeof(iface_ctx.mdm_iccid));
len = MIN(iccid_len, sizeof(iface_ctx.mdm_iccid) - 1);
iface_ctx.mdm_iccid[len] = '\0';
if (iccid_len > len) {
LOG_WRN("ICCID too long: %d (max %d)", iccid_len, len);
}
LOG_INF("ICCID: %s", iface_ctx.mdm_iccid);
return true;
}
static bool on_cmd_atcmdinfo_imsi(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
size_t out_len;
/* The handler for the IMSI is based on the command.
* waiting for: <IMSI>\r\n
*/
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_HL7800_IMSI_MIN_STR_SIZE);
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find IMSI end");
goto done;
}
if (len > MDM_HL7800_IMSI_MAX_STRLEN) {
LOG_WRN("IMSI too long (len:%d)", len);
len = MDM_HL7800_IMSI_MAX_STRLEN;
}
out_len = net_buf_linearize(iface_ctx.mdm_imsi, MDM_HL7800_IMSI_MAX_STR_SIZE,
*buf, 0, len);
iface_ctx.mdm_imsi[out_len] = 0;
if (strstr(iface_ctx.mdm_imsi, "ERROR") != NULL) {
LOG_ERR("Unable to read IMSI");
memset(iface_ctx.mdm_imsi, 0, sizeof(iface_ctx.mdm_imsi));
}
LOG_INF("IMSI: %s", iface_ctx.mdm_imsi);
done:
return true;
}
static void dns_work_cb(struct k_work *work)
{
#if defined(CONFIG_DNS_RESOLVER) && !defined(CONFIG_DNS_SERVER_IP_ADDRESSES)
int ret;
struct dns_resolve_context *dnsCtx;
struct sockaddr temp_addr;
bool valid_address = false;
static const char *const dns_servers_str[] = {
#ifdef CONFIG_NET_IPV6
iface_ctx.dns_v6_string,
#endif
#ifdef CONFIG_NET_IPV4
iface_ctx.dns_v4_string,
#endif
NULL};
#ifdef CONFIG_NET_IPV6
valid_address =
net_ipaddr_parse(iface_ctx.dns_v6_string, strlen(iface_ctx.dns_v6_string),
&temp_addr);
if (!valid_address && IS_ENABLED(CONFIG_NET_IPV4)) {
/* IPv6 DNS string is not valid, replace it with IPv4 address and recheck */
strncpy(iface_ctx.dns_v6_string, iface_ctx.dns_v4_string,
strlen(iface_ctx.dns_v4_string));
valid_address = net_ipaddr_parse(iface_ctx.dns_v6_string,
strlen(iface_ctx.dns_v6_string),
&temp_addr);
}
#else
valid_address =
net_ipaddr_parse(iface_ctx.dns_v4_string, strlen(iface_ctx.dns_v4_string),
&temp_addr);
#endif
if (!valid_address) {
LOG_WRN("No valid DNS address!");
} else if (iface_ctx.iface && net_if_is_up(iface_ctx.iface) && !iface_ctx.dns_ready) {
/* set new DNS addr in DNS resolver */
LOG_DBG("Refresh DNS resolver");
dnsCtx = dns_resolve_get_default();
ret = dns_resolve_reconfigure(dnsCtx, (const char **)dns_servers_str, NULL);
if (ret < 0) {
LOG_ERR("dns_resolve_init fail (%d)", ret);
return;
}
iface_ctx.dns_ready = true;
}
#endif
}
char *mdm_hl7800_get_iccid(void)
{
return iface_ctx.mdm_iccid;
}
char *mdm_hl7800_get_sn(void)
{
return iface_ctx.mdm_sn;
}
char *mdm_hl7800_get_imei(void)
{
return iface_ctx.mdm_imei;
}
char *mdm_hl7800_get_fw_version(void)
{
return iface_ctx.mdm_revision;
}
char *mdm_hl7800_get_imsi(void)
{
return iface_ctx.mdm_imsi;
}
/* Convert HL7800 IPv6 address string in format
* a01.a02.a03.a04.a05.a06.a07.a08.a09.a10.a11.a12.a13.a14.a15.a16 to
* an IPv6 address.
*/
static int hl7800_net_addr6_pton(const char *src, struct in6_addr *dst)
{
int num_sections = 8;
int i, len;
uint16_t ipv6_section;
len = strlen(src);
for (i = 0; i < len; i++) {
if (!(src[i] >= '0' && src[i] <= '9') && src[i] != '.') {
return -EINVAL;
}
}
for (i = 0; i < num_sections; i++) {
if (!src || *src == '\0') {
return -EINVAL;
}
ipv6_section = (uint16_t)strtol(src, NULL, 10);
src = strchr(src, '.');
src++;
if (!src || *src == '\0') {
return -EINVAL;
}
ipv6_section = (ipv6_section << 8) | (uint16_t)strtol(src, NULL, 10);
UNALIGNED_PUT(htons(ipv6_section), &dst->s6_addr16[i]);
src = strchr(src, '.');
if (src) {
src++;
} else {
if (i < num_sections - 1) {
return -EINVAL;
}
}
}
return 0;
}
/* Handler: +CGCONTRDP: <cid>,<bearer_id>,<apn>,<local_addr and subnet_mask>,
* <gw_addr>,<DNS_prim_addr>,<DNS_sec_addr>
*/
static bool on_cmd_atcmdinfo_ipaddr(struct net_buf **buf, uint16_t len)
{
int ret;
int num_delims = CGCONTRDP_RESPONSE_NUM_DELIMS;
char *delims[CGCONTRDP_RESPONSE_NUM_DELIMS];
size_t out_len;
char value[MDM_IP_INFO_RESP_SIZE];
char *search_start, *addr_start, *sm_start;
struct in_addr new_ipv4_addr;
struct in6_addr new_ipv6_addr;
bool is_ipv4;
int addr_len;
char temp_addr_str[HL7800_IPV6_ADDR_LEN];
k_timeout_t delay;
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
search_start = value;
LOG_DBG("IP info: %s", value);
/* find all delimiters (,) */
for (int i = 0; i < num_delims; i++) {
delims[i] = strchr(search_start, ',');
if (!delims[i]) {
LOG_ERR("Could not find delim %d, val: %s", i,
value);
return true;
}
/* Start next search after current delim location */
search_start = delims[i] + 1;
}
/* determine if IPv4 or IPv6 by checking length of ip address plus
* gateway string.
*/
is_ipv4 = false;
addr_len = delims[3] - delims[2];
LOG_DBG("IP string len: %d", addr_len);
if (addr_len <= (NET_IPV4_ADDR_LEN * 2)) {
is_ipv4 = true;
}
/* Find start of subnet mask */
addr_start = delims[2] + 1;
if (is_ipv4) {
num_delims = 4;
} else {
num_delims = 16;
}
search_start = addr_start;
sm_start = addr_start;
for (int i = 0; i < num_delims; i++) {
sm_start = strchr(search_start, '.');
if (!sm_start) {
LOG_ERR("Could not find submask start");
return true;
}
/* Start next search after current delim location */
search_start = sm_start + 1;
}
/* get new IP addr */
addr_len = sm_start - addr_start;
strncpy(temp_addr_str, addr_start, addr_len);
temp_addr_str[addr_len] = 0;
LOG_DBG("IP addr: %s", temp_addr_str);
if (is_ipv4) {
ret = net_addr_pton(AF_INET, temp_addr_str, &new_ipv4_addr);
} else {
ret = hl7800_net_addr6_pton(temp_addr_str, &new_ipv6_addr);
}
if (ret < 0) {
LOG_ERR("Invalid IP addr");
return true;
}
if (is_ipv4) {
/* move past the '.' */
sm_start += 1;
/* store new subnet mask */
addr_len = delims[3] - sm_start;
strncpy(temp_addr_str, sm_start, addr_len);
temp_addr_str[addr_len] = 0;
ret = net_addr_pton(AF_INET, temp_addr_str, &iface_ctx.subnet);
if (ret < 0) {
LOG_ERR("Invalid subnet");
return true;
}
/* store new gateway */
addr_start = delims[3] + 1;
addr_len = delims[4] - addr_start;
strncpy(temp_addr_str, addr_start, addr_len);
temp_addr_str[addr_len] = 0;
ret = net_addr_pton(AF_INET, temp_addr_str, &iface_ctx.gateway);
if (ret < 0) {
LOG_ERR("Invalid gateway");
return true;
}
}
/* store new dns */
addr_start = delims[4] + 1;
addr_len = delims[5] - addr_start;
strncpy(temp_addr_str, addr_start, addr_len);
temp_addr_str[addr_len] = 0;
if (is_ipv4) {
ret = strncmp(temp_addr_str, iface_ctx.dns_v4_string, addr_len);
if (ret != 0) {
iface_ctx.dns_ready = false;
}
strncpy(iface_ctx.dns_v4_string, addr_start, addr_len);
iface_ctx.dns_v4_string[addr_len] = 0;
ret = net_addr_pton(AF_INET, iface_ctx.dns_v4_string, &iface_ctx.dns_v4);
LOG_DBG("IPv4 DNS addr: %s", iface_ctx.dns_v4_string);
}
#ifdef CONFIG_NET_IPV6
else {
ret = strncmp(temp_addr_str, iface_ctx.dns_v6_string, addr_len);
if (ret != 0) {
iface_ctx.dns_ready = false;
}
/* store HL7800 formatted IPv6 DNS string temporarily */
strncpy(iface_ctx.dns_v6_string, addr_start, addr_len);
ret = hl7800_net_addr6_pton(iface_ctx.dns_v6_string, &iface_ctx.dns_v6);
net_addr_ntop(AF_INET6, &iface_ctx.dns_v6, iface_ctx.dns_v6_string,
sizeof(iface_ctx.dns_v6_string));
LOG_DBG("IPv6 DNS addr: %s", iface_ctx.dns_v6_string);
}
#endif
if (ret < 0) {
LOG_ERR("Invalid dns");
return true;
}
if (iface_ctx.iface) {
if (is_ipv4) {
#ifdef CONFIG_NET_IPV4
/* remove the current IPv4 addr before adding a new one.
* We dont care if it is successful or not.
*/
net_if_ipv4_addr_rm(iface_ctx.iface, &iface_ctx.ipv4Addr);
if (!net_if_ipv4_addr_add(iface_ctx.iface, &new_ipv4_addr,
NET_ADDR_DHCP, 0)) {
LOG_ERR("Cannot set iface IPv4 addr");
}
net_if_ipv4_set_netmask(iface_ctx.iface, &iface_ctx.subnet);
net_if_ipv4_set_gw(iface_ctx.iface, &iface_ctx.gateway);
#endif
/* store the new IP addr */
net_ipaddr_copy(&iface_ctx.ipv4Addr, &new_ipv4_addr);
} else {
#if CONFIG_NET_IPV6
net_if_ipv6_addr_rm(iface_ctx.iface, &iface_ctx.ipv6Addr);
if (!net_if_ipv6_addr_add(iface_ctx.iface, &new_ipv6_addr,
NET_ADDR_AUTOCONF, 0)) {
LOG_ERR("Cannot set iface IPv6 addr");
}
#endif
}
/* start DNS update work */
delay = K_NO_WAIT;
if (!iface_ctx.initialized) {
/* Delay this in case the network
* stack is still starting up
*/
delay = K_SECONDS(DNS_WORK_DELAY_SECS);
}
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.dns_work,
delay);
} else {
LOG_ERR("iface NULL");
}
return true;
}
/* Handler1: +COPS: <mode>[,<format>,<oper>[,<AcT>]]
*
* Handler2:
* +COPS: [list of supported (<stat>, long alphanumeric <oper>, short
* alphanumeric <oper>, numeric <oper>[,< AcT>])s][,,
* (list of supported <mode>s),(list of supported <format>s)]
*/
static bool on_cmd_atcmdinfo_operator_status(struct net_buf **buf, uint16_t len)
{
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
int num_delims = COPS_RESPONSE_NUM_DELIMS;
char *delims[COPS_RESPONSE_NUM_DELIMS];
char *search_start;
int i;
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
/* For AT+COPS=?, result is most likely longer than size of log string */
if (strchr(value, '(') != NULL) {
LOG_HEXDUMP_DBG(value, out_len, "Operator: ");
goto done;
} else {
LOG_INF("Operator: %s", value);
}
/* Process AT+COPS? */
if (len == 1) {
/* only mode was returned, there is no operator info */
iface_ctx.operator_status = NO_OPERATOR;
goto done;
}
search_start = value;
/* find all delimiters (,) */
for (i = 0; i < num_delims; i++) {
delims[i] = strchr(search_start, ',');
if (!delims[i]) {
LOG_ERR("Could not find delim %d, val: %s", i, value);
goto done;
}
/* Start next search after current delim location */
search_start = delims[i] + 1;
}
/* we found both delimiters, that means we have an operator */
iface_ctx.operator_status = REGISTERED;
done:
return true;
}
/* Handler: +KGSN: T5640400011101 */
static bool on_cmd_atcmdinfo_serial_number(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
char value[MDM_SN_RESPONSE_LENGTH];
size_t out_len;
int sn_len;
char *val_start;
/* make sure SN# data is received.
* we are waiting for: +KGSN: ##############\r\n
*/
wait_for_modem_data(buf, net_buf_frags_len(*buf),
MDM_SN_RESPONSE_LENGTH);
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find sn end");
goto done;
}
/* get msg data */
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
/* find ':' */
val_start = strchr(value, ':');
if (!val_start) {
LOG_ERR("Unable to find sn ':'");
goto done;
}
/* Remove ": " chars */
val_start += 2;
sn_len = len - (val_start - value);
if (sn_len < MDM_HL7800_SERIAL_NUMBER_STRLEN) {
LOG_WRN("sn too short (len:%d)", sn_len);
} else if (sn_len > MDM_HL7800_SERIAL_NUMBER_STRLEN) {
LOG_WRN("sn too long (len:%d)", sn_len);
sn_len = MDM_HL7800_SERIAL_NUMBER_STRLEN;
}
strncpy(iface_ctx.mdm_sn, val_start, sn_len);
iface_ctx.mdm_sn[sn_len] = 0;
LOG_INF("Serial #: %s", iface_ctx.mdm_sn);
done:
return true;
}
/* Handler: +KSRAT: # */
static bool on_cmd_radio_tech_status(struct net_buf **buf, uint16_t len)
{
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
iface_ctx.mdm_rat = strtol(value, NULL, 10);
LOG_INF("+KSRAT: %d", iface_ctx.mdm_rat);
event_handler(HL7800_EVENT_RAT, &iface_ctx.mdm_rat);
return true;
}
/* Handler: +KBNDCFG: #,####################### */
static bool on_cmd_radio_band_configuration(struct net_buf **buf, uint16_t len)
{
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
char n_tmp[sizeof("#########")];
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
if (value[0] != (iface_ctx.mdm_rat == MDM_RAT_CAT_M1 ? '0' : '1')) {
/* Invalid RAT */
return true;
} else if (strlen(value) < sizeof("#,###################")) {
/* String size too short */
return true;
}
memcpy(iface_ctx.mdm_bands_string, &value[MDM_TOP_BAND_START_POSITION],
MDM_HL7800_LTE_BAND_STRLEN);
memcpy(n_tmp, &value[MDM_TOP_BAND_START_POSITION], MDM_TOP_BAND_SIZE);
n_tmp[MDM_TOP_BAND_SIZE] = 0;
iface_ctx.mdm_bands_top = strtoul(n_tmp, NULL, 16);
memcpy(n_tmp, &value[MDM_MIDDLE_BAND_START_POSITION],
MDM_MIDDLE_BAND_SIZE);
n_tmp[MDM_MIDDLE_BAND_SIZE] = 0;
iface_ctx.mdm_bands_middle = strtoul(n_tmp, NULL, 16);
memcpy(n_tmp, &value[MDM_BOTTOM_BAND_START_POSITION],
MDM_BOTTOM_BAND_SIZE);
n_tmp[MDM_BOTTOM_BAND_SIZE] = 0;
iface_ctx.mdm_bands_bottom = strtoul(n_tmp, NULL, 16);
LOG_INF("Current band configuration: %04x %08x %08x",
iface_ctx.mdm_bands_top, iface_ctx.mdm_bands_middle,
iface_ctx.mdm_bands_bottom);
event_handler(HL7800_EVENT_BANDS, iface_ctx.mdm_bands_string);
return true;
}
/* Handler: +KBND: #,####################### */
static bool on_cmd_radio_active_bands(struct net_buf **buf, uint16_t len)
{
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
if (strlen(value) < sizeof("#,###################")) {
/* String size too short */
return true;
}
memcpy(iface_ctx.mdm_active_bands_string,
&value[MDM_TOP_BAND_START_POSITION], MDM_HL7800_LTE_BAND_STRLEN);
event_handler(HL7800_EVENT_ACTIVE_BANDS, iface_ctx.mdm_active_bands_string);
return true;
}
static char *get_startup_state_string(enum mdm_hl7800_startup_state state)
{
/* clang-format off */
switch (state) {
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_STARTUP_STATE, READY);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_STARTUP_STATE, WAITING_FOR_ACCESS_CODE);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_STARTUP_STATE, SIM_NOT_PRESENT);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_STARTUP_STATE, SIMLOCK);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_STARTUP_STATE, UNRECOVERABLE_ERROR);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_STARTUP_STATE, UNKNOWN);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_STARTUP_STATE, INACTIVE_SIM);
default:
return "UNKNOWN";
}
/* clang-format on */
}
static void set_startup_state(enum mdm_hl7800_startup_state state)
{
iface_ctx.mdm_startup_state = state;
generate_startup_state_event();
}
static void generate_startup_state_event(void)
{
struct mdm_hl7800_compound_event event;
event.code = iface_ctx.mdm_startup_state;
event.string = get_startup_state_string(iface_ctx.mdm_startup_state);
LOG_INF("Startup State: %s", event.string);
event_handler(HL7800_EVENT_STARTUP_STATE_CHANGE, &event);
}
int mdm_hl7800_set_desired_sleep_level(enum mdm_hl7800_sleep level)
{
int r = -EPERM;
#if CONFIG_MODEM_HL7800_LOW_POWER_MODE
switch (level) {
case HL7800_SLEEP_AWAKE:
case HL7800_SLEEP_HIBERNATE:
case HL7800_SLEEP_LITE_HIBERNATE:
case HL7800_SLEEP_SLEEP:
iface_ctx.desired_sleep_level = level;
r = 0;
break;
default:
r = -EINVAL;
}
if (r == 0) {
hl7800_lock();
wakeup_hl7800();
r = set_sleep_level();
allow_sleep(true);
hl7800_unlock();
}
#endif
return r;
}
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
static void initialize_sleep_level(void)
{
if (iface_ctx.desired_sleep_level == HL7800_SLEEP_UNINITIALIZED) {
if (IS_ENABLED(CONFIG_MODEM_HL7800_SLEEP_LEVEL_HIBERNATE)) {
iface_ctx.desired_sleep_level = HL7800_SLEEP_HIBERNATE;
} else if (IS_ENABLED(CONFIG_MODEM_HL7800_SLEEP_LEVEL_LITE_HIBERNATE)) {
iface_ctx.desired_sleep_level = HL7800_SLEEP_LITE_HIBERNATE;
} else if (IS_ENABLED(CONFIG_MODEM_HL7800_SLEEP_LEVEL_SLEEP)) {
iface_ctx.desired_sleep_level = HL7800_SLEEP_SLEEP;
} else {
iface_ctx.desired_sleep_level = HL7800_SLEEP_AWAKE;
}
}
}
static int set_sleep_level(void)
{
char cmd[sizeof("AT+KSLEEP=#,#,##")];
static const char SLEEP_CMD_FMT[] = "AT+KSLEEP=%d,%d,%d";
int delay = CONFIG_MODEM_HL7800_SLEEP_DELAY_AFTER_REBOOT;
int ret = 0;
/* AT+KSLEEP= <management>[,<level>[,<delay to sleep after reboot>]]
* management 1 means the HL7800 decides when it enters sleep mode
*/
switch (iface_ctx.desired_sleep_level) {
case HL7800_SLEEP_HIBERNATE:
snprintk(cmd, sizeof(cmd), SLEEP_CMD_FMT, 1, 2, delay);
break;
case HL7800_SLEEP_LITE_HIBERNATE:
snprintk(cmd, sizeof(cmd), SLEEP_CMD_FMT, 1, 1, delay);
break;
case HL7800_SLEEP_SLEEP:
snprintk(cmd, sizeof(cmd), SLEEP_CMD_FMT, 1, 0, delay);
break;
default:
/* don't sleep */
snprintk(cmd, sizeof(cmd), SLEEP_CMD_FMT, 2, 0, delay);
break;
}
SEND_AT_CMD_EXPECT_OK(cmd);
error:
return ret;
}
#endif /* CONFIG_MODEM_HL7800_LOW_POWER_MODE */
static char *get_sleep_state_string(enum mdm_hl7800_sleep state)
{
/* clang-format off */
switch (state) {
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_SLEEP, UNINITIALIZED);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_SLEEP, HIBERNATE);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_SLEEP, LITE_HIBERNATE);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_SLEEP, SLEEP);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_SLEEP, AWAKE);
default:
return "UNKNOWN";
}
/* clang-format on */
}
static void set_sleep_state(enum mdm_hl7800_sleep state)
{
iface_ctx.sleep_state = state;
if (iface_ctx.sleep_state != HL7800_SLEEP_AWAKE) {
k_sem_reset(&iface_ctx.mdm_awake);
}
generate_sleep_state_event();
}
static void generate_sleep_state_event(void)
{
struct mdm_hl7800_compound_event event;
event.code = iface_ctx.sleep_state;
event.string = get_sleep_state_string(iface_ctx.sleep_state);
LOG_INF("Sleep State: %s", event.string);
event_handler(HL7800_EVENT_SLEEP_STATE_CHANGE, &event);
}
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
static char *get_fota_state_string(enum mdm_hl7800_fota_state state)
{
/* clang-format off */
switch (state) {
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, IDLE);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, START);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, WIP);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, PAD);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, SEND_EOT);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, FILE_ERROR);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, INSTALL);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, REBOOT_AND_RECONFIGURE);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800_FOTA, COMPLETE);
default:
return "UNKNOWN";
}
/* clang-format on */
}
static void set_fota_state(enum mdm_hl7800_fota_state state)
{
LOG_INF("FOTA state: %s->%s",
get_fota_state_string(iface_ctx.fw_update_state),
get_fota_state_string(state));
iface_ctx.fw_update_state = state;
generate_fota_state_event();
}
static void generate_fota_state_event(void)
{
struct mdm_hl7800_compound_event event;
event.code = iface_ctx.fw_update_state;
event.string = get_fota_state_string(iface_ctx.fw_update_state);
event_handler(HL7800_EVENT_FOTA_STATE, &event);
}
static void generate_fota_count_event(void)
{
uint32_t count = iface_ctx.fw_packet_count * XMODEM_DATA_SIZE;
event_handler(HL7800_EVENT_FOTA_COUNT, &count);
}
#endif
/* Handler: +KSUP: # */
static bool on_cmd_startup_report(struct net_buf **buf, uint16_t len)
{
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
memset(value, 0, sizeof(value));
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
if (out_len > 0) {
set_startup_state(strtol(value, NULL, 10));
} else {
set_startup_state(HL7800_STARTUP_STATE_UNKNOWN);
}
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
if (iface_ctx.fw_updated) {
iface_ctx.fw_updated = false;
set_fota_state(HL7800_FOTA_REBOOT_AND_RECONFIGURE);
/* issue reset after a firmware update to reconfigure modem state */
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.mdm_reset_work,
K_NO_WAIT);
} else
#endif
{
PRINT_AWAKE_MSG;
iface_ctx.wait_for_KSUP = false;
iface_ctx.mdm_startup_reporting_on = true;
iface_ctx.reconfig_IP_connection = true;
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
mark_sockets_for_reconfig();
#endif
set_sleep_state(HL7800_SLEEP_AWAKE);
k_sem_give(&iface_ctx.mdm_awake);
}
return true;
}
static bool profile_handler(struct net_buf **buf, uint16_t len,
bool active_profile)
{
uint32_t size;
int echo_state = -1;
struct net_buf *frag = NULL;
uint16_t line_length;
char line[MAX_PROFILE_LINE_LENGTH];
size_t output_length;
/* Prepare net buffer for this parser. */
net_buf_remove(buf, len);
net_buf_skipcrlf(buf);
size = wait_for_modem_data(buf, net_buf_frags_len(*buf),
sizeof(PROFILE_LINE_1));
net_buf_skipcrlf(buf); /* remove any \r\n that are in the front */
/* Parse configuration data to determine if echo is on/off. */
line_length = net_buf_findcrlf(*buf, &frag);
if (line_length) {
memset(line, 0, sizeof(line));
output_length = net_buf_linearize(line, SIZE_WITHOUT_NUL(line),
*buf, 0, line_length);
LOG_DBG("length: %u: %s", line_length, line);
/* Echo on off is the first thing on the line: E0, E1 */
if (output_length >= SIZE_WITHOUT_NUL("E?")) {
echo_state = (line[1] == '1') ? 1 : 0;
}
}
LOG_DBG("echo: %d", echo_state);
net_buf_remove(buf, line_length);
net_buf_skipcrlf(buf);
if (active_profile) {
iface_ctx.mdm_echo_is_on = (echo_state != 0);
}
/* Discard next line. This waits for the longest possible response even
* though most registers won't have the value 0xFF. */
size = wait_for_modem_data(buf, net_buf_frags_len(*buf),
sizeof(PROFILE_LINE_2));
net_buf_skipcrlf(buf);
len = net_buf_findcrlf(*buf, &frag);
net_buf_remove(buf, len);
net_buf_skipcrlf(buf);
return false;
}
static bool on_cmd_atcmdinfo_active_profile(struct net_buf **buf, uint16_t len)
{
return profile_handler(buf, len, true);
}
static bool on_cmd_atcmdinfo_stored_profile0(struct net_buf **buf, uint16_t len)
{
return profile_handler(buf, len, false);
}
static bool on_cmd_atcmdinfo_stored_profile1(struct net_buf **buf, uint16_t len)
{
return profile_handler(buf, len, false);
}
/* +WPPP: 1,1,"username","password" */
static bool on_cmd_atcmdinfo_pdp_authentication_cfg(struct net_buf **buf,
uint16_t len)
{
struct net_buf *frag = NULL;
uint16_t line_length;
char line[MDM_HL7800_APN_CMD_MAX_SIZE];
size_t output_length;
size_t i;
char *p;
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_HL7800_APN_CMD_MAX_SIZE);
line_length = net_buf_findcrlf(*buf, &frag);
if (line_length) {
memset(line, 0, sizeof(line));
output_length = net_buf_linearize(line, SIZE_WITHOUT_NUL(line),
*buf, 0, line_length);
LOG_DBG("length: %u: %s", line_length, line);
if (output_length > 0) {
memset(iface_ctx.mdm_apn.username, 0,
sizeof(iface_ctx.mdm_apn.username));
memset(iface_ctx.mdm_apn.password, 0,
sizeof(iface_ctx.mdm_apn.password));
i = 0;
p = strchr(line, '"');
if (p != NULL) {
p += 1;
i = 0;
while ((p != NULL) && (*p != '"') &&
(i <
MDM_HL7800_APN_USERNAME_MAX_STRLEN)) {
iface_ctx.mdm_apn.username[i++] = *p++;
}
}
LOG_INF("APN Username: %s",
iface_ctx.mdm_apn.username);
p = strchr(p + 1, '"');
if (p != NULL) {
p += 1;
i = 0;
while ((p != NULL) && (*p != '"') &&
(i <
MDM_HL7800_APN_PASSWORD_MAX_STRLEN)) {
iface_ctx.mdm_apn.password[i++] = *p++;
}
}
LOG_INF("APN Password: %s",
iface_ctx.mdm_apn.password);
}
}
net_buf_remove(buf, line_length);
net_buf_skipcrlf(buf);
return false;
}
/* Only context 1 is used. Other contexts are unhandled.
*
* +CGDCONT: 1,"IP","access point name",,0,0,0,0,0,,0,,,,,
*/
static bool on_cmd_atcmdinfo_pdp_context(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
uint16_t line_length;
char line[MDM_HL7800_APN_CMD_MAX_SIZE];
size_t output_length;
char *p;
size_t i;
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_HL7800_APN_CMD_MAX_SIZE);
line_length = net_buf_findcrlf(*buf, &frag);
if (line_length) {
memset(line, 0, sizeof(line));
output_length = net_buf_linearize(line, SIZE_WITHOUT_NUL(line),
*buf, 0, line_length);
LOG_DBG("length: %u: %s", line_length, line);
if (output_length > 0) {
memset(iface_ctx.mdm_apn.value, 0, sizeof(iface_ctx.mdm_apn.value));
memset(iface_ctx.mdm_pdp_addr_fam, 0, MDM_ADDR_FAM_MAX_LEN);
/* Address family after first , */
p = strchr(line, ',');
if (p == NULL) {
LOG_WRN("Issue parsing APN response");
goto done;
}
p += 2;
i = 0;
while ((p != NULL) && (*p != '"') && (i < MDM_ADDR_FAM_MAX_LEN)) {
iface_ctx.mdm_pdp_addr_fam[i++] = *p++;
}
if (strcmp(iface_ctx.mdm_pdp_addr_fam, ADDRESS_FAMILY_IP) == 0) {
snprintk(iface_ctx.mdm_pdp_addr_fam,
sizeof(iface_ctx.mdm_pdp_addr_fam), "%s",
ADDRESS_FAMILY_IPV4);
}
LOG_DBG("PDP address family: %s", iface_ctx.mdm_pdp_addr_fam);
/* APN after second , " */
p = strchr(p, ',');
if (p == NULL) {
LOG_WRN("Issue parsing APN response");
goto done;
}
p++;
if (*p == ',') {
/* APN is blank */
goto done;
}
if (*p == '"') {
p++;
i = 0;
while ((p != NULL) && (*p != '"') &&
(i < MDM_HL7800_APN_MAX_STRLEN)) {
iface_ctx.mdm_apn.value[i++] = *p++;
}
}
LOG_INF("APN: %s", iface_ctx.mdm_apn.value);
}
}
done:
net_buf_remove(buf, line_length);
net_buf_skipcrlf(buf);
return false;
}
static int hl7800_query_rssi(void)
{
int ret;
ret = send_at_cmd(NULL, "AT+KCELLMEAS=0", MDM_CMD_SEND_TIMEOUT, 1,
false);
if (ret < 0) {
LOG_ERR("AT+KCELLMEAS ret:%d", ret);
}
return ret;
}
static void hl7800_start_rssi_work(void)
{
/* Rate is not checked here to allow one reading
* when going from network down->up
*/
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.rssi_query_work,
K_NO_WAIT);
}
static void hl7800_stop_rssi_work(void)
{
int rc;
rc = k_work_cancel_delayable(&iface_ctx.rssi_query_work);
if (rc != 0) {
LOG_ERR("Could not cancel RSSI work [%d]", rc);
}
}
static void rssi_query(void)
{
hl7800_lock();
wakeup_hl7800();
hl7800_query_rssi();
allow_sleep(true);
hl7800_unlock();
}
static void hl7800_rssi_query_work(struct k_work *work)
{
rssi_query();
/* re-start RSSI query work */
if (CONFIG_MODEM_HL7800_RSSI_RATE_SECONDS > 0) {
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.rssi_query_work,
K_SECONDS(CONFIG_MODEM_HL7800_RSSI_RATE_SECONDS));
}
}
#ifdef CONFIG_MODEM_HL7800_GPS
/* Unsolicited notification
* Handler: +GNSSEV: <eventType>,<eventStatus>
*/
static bool on_cmd_gps_event(struct net_buf **buf, uint16_t len)
{
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
char *start = NULL;
char *end = NULL;
int8_t event = -1;
int8_t status = -1;
memset(value, 0, sizeof(value));
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
if (out_len > 0) {
start = value;
event = strtol(start, &end, 10);
if (end == strchr(value, ',')) {
start = end + 1;
status = strtol(start, &end, 10);
}
}
LOG_INF("GPS event: %d status: %d", event, status);
if (event == HL7800_GNSS_EVENT_POSITION) {
event_handler(HL7800_EVENT_GPS_POSITION_STATUS, &status);
}
return true;
}
static void gps_work_callback(struct k_work *work)
{
ARG_UNUSED(work);
int r;
hl7800_lock();
wakeup_hl7800();
r = send_at_cmd(NULL, "AT+GNSSLOC?", MDM_CMD_SEND_TIMEOUT, 1, false);
allow_sleep(true);
hl7800_unlock();
LOG_DBG("GPS location request status: %d", r);
if (iface_ctx.gps_query_location_rate_seconds) {
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.gps_work,
K_SECONDS(iface_ctx.gps_query_location_rate_seconds));
}
}
/* The AT+GNSSLOC? command returns 1 of 2 things:
*
* +GNSSLOC:
* Latitude: "49 Deg 10 Min 21.49 Sec N"
* Longitude: "123 Deg 4 Min 14.76 Sec W"
* GpsTime: "yyyy mm dd hh:mm:ss"
* FixType: "2D" or "3D"
* HEPE: "8.485 m" (Horizontal Estimated Position Error)
* Altitude: "-1 m"
* AltUnc: "3.0 m"
* Direction: "0.0 deg"
* HorSpeed: "0.0 m/s"
* VerSpeed: "0.0 m/s"
* OK
*
* OR
*
* +GNSSLOC:
* FIX NOT AVAILABLE
* OK
*
* Since each response is on its own line, the command handler is used
* to handle each one as an individual response.
*/
static bool gps_handler(struct net_buf **buf, uint16_t len,
enum mdm_hl7800_gps_string_types str_type)
{
struct mdm_hl7800_compound_event event;
char gps_str[MDM_HL7800_MAX_GPS_STR_SIZE];
size_t gps_len = sizeof(gps_str) - 1;
struct net_buf *frag = NULL;
size_t out_len;
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf), sizeof(gps_str));
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find end");
goto done;
}
if (len > gps_len) {
LOG_WRN("GPS string too long (len:%d)", len);
len = gps_len;
}
out_len = net_buf_linearize(gps_str, gps_len, *buf, 0, len);
gps_str[out_len] = 0;
event.code = str_type;
event.string = gps_str;
event_handler(HL7800_EVENT_GPS, &event);
done:
return true;
}
static bool on_cmd_latitude(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_LATITUDE);
}
static bool on_cmd_longitude(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_LONGITUDE);
}
static bool on_cmd_gps_time(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_GPS_TIME);
}
static bool on_cmd_fix_type(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_FIX_TYPE);
}
static bool on_cmd_hepe(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_HEPE);
}
static bool on_cmd_altitude(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_ALTITUDE);
}
static bool on_cmd_alt_unc(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_ALT_UNC);
}
static bool on_cmd_direction(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_DIRECTION);
}
static bool on_cmd_hor_speed(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_HOR_SPEED);
}
static bool on_cmd_ver_speed(struct net_buf **buf, uint16_t len)
{
return gps_handler(buf, len, HL7800_GPS_STR_VER_SPEED);
}
#endif /* CONFIG_MODEM_HL7800_GPS */
#ifdef CONFIG_MODEM_HL7800_POLTE
/* Handler: %POLTEEVU: "REGISTER",0, <mqttAuthUser>, <mqttAuthPassword> */
static bool on_cmd_polte_registration(struct net_buf **buf, uint16_t len)
{
char rsp[MDM_MAX_RESP_SIZE] = { 0 };
size_t rsp_len = sizeof(rsp) - 1;
char *rsp_end = rsp + rsp_len;
struct mdm_hl7800_polte_registration_event_data data;
struct net_buf *frag = NULL;
size_t out_len;
char *location;
bool parsed;
memset(&data, 0, sizeof(data));
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf), sizeof(rsp));
location = rsp;
parsed = false;
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
do {
if (!frag) {
LOG_ERR("Unable to find end");
break;
}
if (len > rsp_len) {
LOG_WRN("string too long (len:%d)", len);
len = rsp_len;
}
out_len = net_buf_linearize(rsp, rsp_len, *buf, 0, len);
rsp[out_len] = 0;
/* Command handler looks for string up to the user field */
location = strstr(location, "\"");
if (location != NULL && location < rsp_end) {
location += 1;
if (location >= rsp_end) {
break;
}
data.user = location;
} else {
break;
}
/* Find end of user field and null terminate string */
location = strstr(location, "\"");
if (location != NULL && location < rsp_end) {
*location = 0;
location += 1;
if (location >= rsp_end) {
break;
}
} else {
break;
}
location = strstr(location, ",\"");
if (location != NULL && location < rsp_end) {
location += 2;
if (location >= rsp_end) {
break;
}
data.password = location;
} else {
break;
}
location = strstr(location, "\"");
if (location != NULL && location < rsp_end) {
*location = 0;
} else {
break;
}
parsed = true;
} while (false);
if (parsed && data.user && data.password) {
data.status = 0;
} else {
data.status = -1;
LOG_ERR("Unable to parse PoLTE registration");
}
event_handler(HL7800_EVENT_POLTE_REGISTRATION, &data);
return true;
}
/* Handler: %POLTECMD: "LOCATE",<res> */
static bool on_cmd_polte_locate_cmd_rsp(struct net_buf **buf, uint16_t len)
{
char rsp[sizeof("99")] = { 0 };
size_t rsp_len = sizeof(rsp) - 1;
size_t out_len;
struct net_buf *frag = NULL;
struct mdm_hl7800_polte_location_data data;
memset(&data, 0, sizeof(data));
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf), sizeof(rsp));
data.status = -1;
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
do {
if (!frag) {
LOG_ERR("Unable to find end");
break;
}
if (len > rsp_len) {
LOG_WRN("string too long (len:%d)", len);
len = rsp_len;
}
out_len = net_buf_linearize(rsp, rsp_len, *buf, 0, len);
rsp[out_len] = 0;
data.status = (uint32_t)strtoul(rsp, NULL, 10);
} while (false);
event_handler(HL7800_EVENT_POLTE_LOCATE_STATUS, &data);
return true;
}
/* Handler:
* %POLTEEVU: "LOCATION",<stat>[,<latitude>,<longitude>,<time>,<confidence>]
*/
static bool on_cmd_polte_location(struct net_buf **buf, uint16_t len)
{
char rsp[MDM_MAX_RESP_SIZE] = { 0 };
size_t rsp_len = sizeof(rsp) - 1;
char *rsp_end = rsp + rsp_len;
struct net_buf *frag = NULL;
size_t out_len = 0;
char *start;
char *end;
bool parsed;
struct mdm_hl7800_polte_location_data data;
static const char POLTE_LOC_DELIMITER[] = "\",\"";
memset(&data, 0, sizeof(data));
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf), sizeof(rsp));
parsed = false;
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
do {
if (!frag) {
LOG_ERR("Unable to find end");
break;
}
if (len > rsp_len) {
LOG_WRN("string too long (len:%d)", len);
len = rsp_len;
}
out_len = net_buf_linearize(rsp, rsp_len, *buf, 0, len);
rsp[out_len] = 0;
data.status = -1;
start = rsp;
end = "";
/* Comma isn't present when there is an error. */
start = strstr(start, ",");
if (start != NULL && start < rsp_end) {
*start = ' ';
start += 1;
}
data.status = (uint32_t)strtoul(rsp, &end, 10);
if (data.status != 0) {
LOG_WRN("Response not received from PoLTE server: %d", data.status);
data.status = MDM_HL7800_POLTE_SERVER_ERROR;
parsed = true;
break;
} else if (start >= rsp_end) {
break;
}
start = strstr(start, "\"") + 1;
end = strstr(start, POLTE_LOC_DELIMITER);
if (start > rsp && start < rsp_end && end < rsp_end && end > start) {
memcpy(data.latitude, start, MIN(end - start, sizeof(data.latitude) - 1));
} else {
break;
}
start = end + strlen(POLTE_LOC_DELIMITER);
end = strstr(start, POLTE_LOC_DELIMITER);
if (start > rsp && start < rsp_end && end < rsp_end && end > start) {
memcpy(data.longitude, start, MIN(end - start, sizeof(data.longitude) - 1));
} else {
break;
}
start = end + strlen(POLTE_LOC_DELIMITER);
end = strstr(start, POLTE_LOC_DELIMITER);
if (start > rsp && start < rsp_end && end < rsp_end && end > start) {
data.timestamp = (uint32_t)strtoul(start, NULL, 10);
} else {
break;
}
start = end + strlen(POLTE_LOC_DELIMITER);
end = strstr(start, "\"");
if (start > rsp && start < rsp_end && end < rsp_end && end > start) {
memcpy(data.confidence_in_meters, start,
MIN(end - start, sizeof(data.confidence_in_meters) - 1));
} else {
break;
}
parsed = true;
} while (false);
if (!parsed) {
LOG_HEXDUMP_ERR(rsp, out_len, "Unable to parse PoLTE location");
} else {
LOG_HEXDUMP_DBG(rsp, out_len, "PoLTE Location");
}
event_handler(HL7800_EVENT_POLTE, &data);
return true;
}
#endif /* CONFIG_MODEM_HL7800_POLTE */
static void notify_all_tcp_sockets_closed(void)
{
int i;
struct hl7800_socket *sock = NULL;
for (i = 0; i < MDM_MAX_SOCKETS; i++) {
sock = &iface_ctx.sockets[i];
if ((sock->context != NULL) && (sock->type == SOCK_STREAM)) {
LOG_DBG("Sock %d closed", sock->socket_id);
/* signal RX callback with null packet */
if (sock->recv_cb) {
sock->recv_cb(sock->context, sock->recv_pkt,
NULL, NULL, 0,
sock->recv_user_data);
}
}
}
}
static void iface_status_work_cb(struct k_work *work)
{
int ret;
hl7800_lock();
enum mdm_hl7800_network_state state;
if (iface_ctx.off) {
goto done;
} else if (!iface_ctx.initialized && iface_ctx.restarting) {
LOG_DBG("Wait for driver init, process network state later");
/* we are not ready to process this yet, try again later */
k_work_reschedule_for_queue(&hl7800_workq,
&iface_ctx.iface_status_work,
IFACE_WORK_DELAY);
goto done;
} else if (iface_ctx.wait_for_KSUP &&
iface_ctx.wait_for_KSUP_tries < WAIT_FOR_KSUP_RETRIES) {
LOG_DBG("Wait for +KSUP before updating network state");
iface_ctx.wait_for_KSUP_tries++;
/* we have not received +KSUP yet, lets wait more time to receive +KSUP */
k_work_reschedule_for_queue(&hl7800_workq,
&iface_ctx.iface_status_work,
IFACE_WORK_DELAY);
goto done;
} else if (iface_ctx.wait_for_KSUP &&
iface_ctx.wait_for_KSUP_tries >= WAIT_FOR_KSUP_RETRIES) {
/* give up waiting for KSUP */
LOG_DBG("Give up waiting for");
iface_ctx.wait_for_KSUP = false;
check_hl7800_awake();
}
wakeup_hl7800();
LOG_DBG("Updating network state...");
state = iface_ctx.network_state;
/* Ensure we bring the network interface down and then re-check the current state */
if (iface_ctx.network_dropped) {
iface_ctx.network_dropped = false;
state = HL7800_OUT_OF_COVERAGE;
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.iface_status_work,
IFACE_WORK_DELAY);
}
/* Query operator selection */
ret = send_at_cmd(NULL, "AT+COPS?", MDM_CMD_SEND_TIMEOUT, 0, false);
if (ret < 0) {
LOG_ERR("AT+COPS ret:%d", ret);
}
/* bring iface up/down */
switch (state) {
case HL7800_HOME_NETWORK:
case HL7800_ROAMING:
if (iface_ctx.iface) {
LOG_DBG("HL7800 iface UP");
net_if_carrier_on(iface_ctx.iface);
}
break;
case HL7800_OUT_OF_COVERAGE:
default:
if (iface_ctx.iface && (iface_ctx.low_power_mode != HL7800_LPM_PSM)) {
LOG_DBG("HL7800 iface DOWN");
iface_ctx.dns_ready = false;
net_if_carrier_off(iface_ctx.iface);
}
break;
}
if ((iface_ctx.iface && !net_if_is_up(iface_ctx.iface)) ||
(iface_ctx.low_power_mode == HL7800_LPM_PSM && state == HL7800_OUT_OF_COVERAGE)) {
hl7800_stop_rssi_work();
notify_all_tcp_sockets_closed();
} else if (iface_ctx.iface && net_if_is_up(iface_ctx.iface)) {
hl7800_start_rssi_work();
/* get IP address info */
(void)send_at_cmd(NULL, "AT+CGCONTRDP=1", MDM_CMD_SEND_TIMEOUT,
CONFIG_MODEM_HL7800_GET_IP_ADDR_INFO_ATTEMPTS, false);
/* get active bands */
SEND_AT_CMD_IGNORE_ERROR("AT+KBND?");
}
LOG_DBG("Network state updated");
allow_sleep(true);
done:
hl7800_unlock();
}
static char *get_network_state_string(enum mdm_hl7800_network_state state)
{
switch (state) {
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800, NOT_REGISTERED);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800, HOME_NETWORK);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800, SEARCHING);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800, REGISTRATION_DENIED);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800, OUT_OF_COVERAGE);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800, ROAMING);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800, EMERGENCY);
PREFIXED_SWITCH_CASE_RETURN_STRING(HL7800, UNABLE_TO_CONFIGURE);
default:
return "UNKNOWN";
}
}
static void set_network_state(enum mdm_hl7800_network_state state)
{
iface_ctx.network_state = state;
generate_network_state_event();
}
static void generate_network_state_event(void)
{
struct mdm_hl7800_compound_event event;
event.code = iface_ctx.network_state;
event.string = get_network_state_string(iface_ctx.network_state);
LOG_INF("Network State: %d %s", iface_ctx.network_state, event.string);
event_handler(HL7800_EVENT_NETWORK_STATE_CHANGE, &event);
}
/* Handler: +CEREG: <n>,<stat>[,[<lac>],[<ci>],[<AcT>]
* [,[<cause_type>],[<reject_cause>] [,[<Active-Time>],[<Periodic-TAU>]]]]
*/
static bool on_cmd_network_report_query(struct net_buf **buf, uint16_t len)
{
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
char *pos;
int l;
char val[MDM_MAX_RESP_SIZE];
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
pos = strchr(value, ',');
if (pos) {
l = (value + out_len) - pos;
strncpy(val, pos + 1, l);
val[l] = 0;
set_network_state(strtol(val, NULL, 0));
/* start work to adjust iface */
k_work_reschedule_for_queue(&hl7800_workq,
&iface_ctx.iface_status_work,
IFACE_WORK_DELAY);
}
return true;
}
static bool on_cmd_operator_index_query(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
char carrier[MDM_HL7800_OPERATOR_INDEX_SIZE];
size_t out_len;
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_HL7800_OPERATOR_INDEX_SIZE);
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find end of operator index response");
goto done;
}
out_len = net_buf_linearize(carrier, MDM_HL7800_OPERATOR_INDEX_STRLEN,
*buf, 0, len);
carrier[out_len] = 0;
iface_ctx.operator_index = (uint8_t)strtol(carrier, NULL, 10);
LOG_INF("Operator Index: %u", iface_ctx.operator_index);
done:
return true;
}
static bool on_cmd_modem_functionality(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag;
size_t out_len;
char rsp[MDM_HL7800_MODEM_FUNCTIONALITY_SIZE];
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
MDM_HL7800_MODEM_FUNCTIONALITY_SIZE);
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find end of response");
goto done;
}
out_len = net_buf_linearize(rsp, MDM_HL7800_MODEM_FUNCTIONALITY_STRLEN,
*buf, 0, len);
rsp[out_len] = 0;
iface_ctx.functionality = strtol(rsp, NULL, 10);
LOG_INF("Modem Functionality: %u", iface_ctx.functionality);
done:
return true;
}
/* There can be multiple responses from a single command.
* %MEAS: EARFCN=5826, CellID=420, RSRP=-99, RSRQ=-15
* %MEAS: EARFCN=6400, CellID=201, RSRP=-93, RSRQ=-21
*/
static bool on_cmd_survey_status(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
char response[sizeof("EARFCN=XXXXXXXXXXX, CellID=XXXXXXXXXXX, RSRP=-XXX, RSRQ=-XXX")];
char *key;
size_t out_len;
char *value;
struct mdm_hl7800_site_survey site_survey;
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
sizeof(response));
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_ERR("Unable to find end");
goto done;
}
out_len = net_buf_linearize(response, sizeof(response), *buf, 0, len);
LOG_HEXDUMP_DBG(response, out_len, "Site Survey");
key = "EARFCN=";
value = strstr(response, key);
if (value == NULL) {
goto done;
} else {
value += strlen(key);
site_survey.earfcn = strtoul(value, NULL, 10);
}
key = "CellID=";
value = strstr(response, key);
if (value == NULL) {
goto done;
} else {
value += strlen(key);
site_survey.cell_id = strtoul(value, NULL, 10);
}
key = "RSRP=";
value = strstr(response, key);
if (value == NULL) {
goto done;
} else {
value += strlen(key);
site_survey.rsrp = strtol(value, NULL, 10);
}
key = "RSRQ=";
value = strstr(response, key);
if (value == NULL) {
goto done;
} else {
value += strlen(key);
site_survey.rsrq = strtol(value, NULL, 10);
}
event_handler(HL7800_EVENT_SITE_SURVEY, &site_survey);
done:
return true;
}
/* Handler: +CCLK: "yy/MM/dd,hh:mm:ss±zz" */
static bool on_cmd_rtc_query(struct net_buf **buf, uint16_t len)
{
struct net_buf *frag = NULL;
size_t str_len = sizeof(TIME_STRING_FORMAT) - 1;
char rtc_string[sizeof(TIME_STRING_FORMAT)];
memset(rtc_string, 0, sizeof(rtc_string));
iface_ctx.local_time_valid = false;
wait_for_modem_data_and_newline(buf, net_buf_frags_len(*buf),
sizeof(TIME_STRING_FORMAT));
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
goto done;
}
if (len != str_len) {
LOG_WRN("Unexpected length for RTC string %d (expected:%zu)",
len, str_len);
} else {
net_buf_linearize(rtc_string, str_len, *buf, 0, str_len);
LOG_INF("RTC string: '%s'", rtc_string);
iface_ctx.local_time_valid = convert_time_string_to_struct(
&iface_ctx.local_time, &iface_ctx.local_time_offset, rtc_string);
}
done:
return true;
}
static bool valid_time_string(const char *time_string)
{
size_t offset, i;
/* Ensure the all the expected delimiters are present */
offset = TIME_STRING_DIGIT_STRLEN + TIME_STRING_SEPARATOR_STRLEN;
i = TIME_STRING_FIRST_SEPARATOR_INDEX;
for (; i < TIME_STRING_PLUS_MINUS_INDEX; i += offset) {
if (time_string[i] != TIME_STRING_FORMAT[i]) {
return false;
}
}
/* The last character is the offset from UTC and can be either
* positive or negative. The last " is also handled here.
*/
if ((time_string[i] == '+' || time_string[i] == '-') &&
(time_string[i + offset] == '"')) {
return true;
}
return false;
}
int get_next_time_string_digit(int *failure_cnt, char **pp, int min, int max)
{
char digits[TIME_STRING_DIGIT_STRLEN + SIZE_OF_NUL];
int result;
memset(digits, 0, sizeof(digits));
memcpy(digits, *pp, TIME_STRING_DIGIT_STRLEN);
*pp += TIME_STRING_DIGIT_STRLEN + TIME_STRING_SEPARATOR_STRLEN;
result = strtol(digits, NULL, 10);
if (result > max) {
*failure_cnt += 1;
return max;
} else if (result < min) {
*failure_cnt += 1;
return min;
} else {
return result;
}
}
static bool convert_time_string_to_struct(struct tm *tm, int32_t *offset,
char *time_string)
{
int fc = 0;
char *ptr = time_string;
if (!valid_time_string(ptr)) {
return false;
}
ptr = &ptr[TIME_STRING_FIRST_DIGIT_INDEX];
tm->tm_year = TIME_STRING_TO_TM_STRUCT_YEAR_OFFSET +
get_next_time_string_digit(&fc, &ptr, TM_YEAR_RANGE);
tm->tm_mon =
get_next_time_string_digit(&fc, &ptr, TM_MONTH_RANGE_PLUS_1) -
1;
tm->tm_mday = get_next_time_string_digit(&fc, &ptr, TM_DAY_RANGE);
tm->tm_hour = get_next_time_string_digit(&fc, &ptr, TM_HOUR_RANGE);
tm->tm_min = get_next_time_string_digit(&fc, &ptr, TM_MIN_RANGE);
tm->tm_sec = get_next_time_string_digit(&fc, &ptr, TM_SEC_RANGE);
tm->tm_isdst = 0;
*offset = (int32_t)get_next_time_string_digit(&fc, &ptr,
QUARTER_HOUR_RANGE) *
SECONDS_PER_QUARTER_HOUR;
if (time_string[TIME_STRING_PLUS_MINUS_INDEX] == '-') {
*offset *= -1;
}
return (fc == 0);
}
/* Handler: +CEREG: <stat>[,[<lac>],[<ci>],[<AcT>]
* [,[<cause_type>],[<reject_cause>] [,[<Active-Time>],[<Periodic-TAU>]]]]
*/
static bool on_cmd_network_report(struct net_buf **buf, uint16_t len)
{
size_t out_len;
char *pos;
int l;
char val[MDM_MAX_RESP_SIZE];
out_len = net_buf_linearize(iface_ctx.mdm_network_status,
sizeof(iface_ctx.mdm_network_status) - 1, *buf,
0, len);
iface_ctx.mdm_network_status[out_len] = 0;
LOG_DBG("Network status: %s", iface_ctx.mdm_network_status);
pos = strchr(iface_ctx.mdm_network_status, ',');
if (pos) {
l = pos - iface_ctx.mdm_network_status;
strncpy(val, iface_ctx.mdm_network_status, l);
val[l] = 0;
set_network_state(strtol(val, NULL, 0));
} else {
set_network_state(strtol(iface_ctx.mdm_network_status, NULL, 0));
}
/* keep HL7800 awake because we want to process the network state soon */
allow_sleep(false);
/* start work to adjust iface */
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.iface_status_work,
IFACE_WORK_DELAY);
return true;
}
/* Handler: +KCELLMEAS: <RSRP>,<Downlink Path Loss>,<PUSCH Tx Power>,
* <PUCCH Tx Power>,<SiNR>
*/
static bool on_cmd_atcmdinfo_rssi(struct net_buf **buf, uint16_t len)
{
/* number of ',' delimiters in this response */
int num_delims = KCELLMEAS_RESPONSE_NUM_DELIMS;
char *delims[KCELLMEAS_RESPONSE_NUM_DELIMS];
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
char *search_start;
int i;
out_len = net_buf_linearize(value, len, *buf, 0, len);
value[out_len] = 0;
search_start = value;
/* find all delimiters */
for (i = 0; i < num_delims; i++) {
delims[i] = strchr(search_start, ',');
if (!delims[i]) {
LOG_ERR("Could not find delim %d, val: %s", i,
value);
goto done;
}
/* Start next search after current delim location */
search_start = delims[i] + 1;
}
/* the first value in the message is the RSRP */
iface_ctx.mdm_rssi = strtol(value, NULL, 10);
/* the 4th ',' (last in the msg) is the start of the SINR */
iface_ctx.mdm_sinr = strtol(delims[3] + 1, NULL, 10);
if ((delims[1] - delims[0]) == 1) {
/* there is no value between the first and second
* delimiter, signal is unknown
*/
LOG_INF("RSSI (RSRP): UNKNOWN");
} else {
LOG_INF("RSSI (RSRP): %d SINR: %d", iface_ctx.mdm_rssi,
iface_ctx.mdm_sinr);
event_handler(HL7800_EVENT_RSSI, &iface_ctx.mdm_rssi);
event_handler(HL7800_EVENT_SINR, &iface_ctx.mdm_sinr);
}
done:
return true;
}
/* Handle the "OK" response from an AT command or a socket call */
static bool on_cmd_sockok(struct net_buf **buf, uint16_t len)
{
struct hl7800_socket *sock = NULL;
sock = socket_from_id(iface_ctx.last_socket_id);
if (!sock) {
iface_ctx.last_error = 0;
k_sem_give(&iface_ctx.response_sem);
} else {
sock->error = 0;
k_sem_give(&sock->sock_send_sem);
}
return true;
}
/* Handler: +KTCP_IND/+KUDP_IND */
static bool on_cmd_sock_ind(struct net_buf **buf, uint16_t len, const char *const type)
{
struct hl7800_socket *sock = NULL;
char *delim;
char value[MDM_MAX_RESP_SIZE];
size_t out_len;
int id;
iface_ctx.last_error = 0;
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
/* find ',' because this is the format we expect */
delim = strchr(value, ',');
if (!delim) {
LOG_ERR("%s could not find ','", type);
goto done;
}
id = strtol(value, NULL, 10);
LOG_DBG("%s ID: %d", type, id);
sock = socket_from_id(id);
if (sock) {
sock->error = 0;
k_sem_give(&sock->sock_send_sem);
}
done:
return true;
}
static bool on_cmd_ktcp_ind(struct net_buf **buf, uint16_t len)
{
return on_cmd_sock_ind(buf, len, "+KTCP_IND");
}
static bool on_cmd_kudp_ind(struct net_buf **buf, uint16_t len)
{
return on_cmd_sock_ind(buf, len, "+KUDP_IND");
}
/* Handler: ERROR */
static bool on_cmd_sockerror(struct net_buf **buf, uint16_t len)
{
struct hl7800_socket *sock = NULL;
char string[MDM_MAX_RESP_SIZE];
if (len > 0) {
memset(string, 0, sizeof(string));
net_buf_linearize(string, sizeof(string), *buf, 0, len);
LOG_ERR("'%s'", string);
}
sock = socket_from_id(iface_ctx.last_socket_id);
if (!sock) {
iface_ctx.last_error = -EIO;
k_sem_give(&iface_ctx.response_sem);
} else {
sock->error = -EIO;
k_sem_give(&sock->sock_send_sem);
}
return true;
}
/* Handler: CME/CMS Error */
static bool on_cmd_sock_error_code(struct net_buf **buf, uint16_t len)
{
struct hl7800_socket *sock = NULL;
char value[MDM_MAX_RESP_SIZE];
size_t out_len;
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
LOG_ERR("Error code: %s", value);
sock = socket_from_id(iface_ctx.last_socket_id);
if (!sock) {
iface_ctx.last_error = -EIO;
k_sem_give(&iface_ctx.response_sem);
} else {
sock->error = -EIO;
k_sem_give(&sock->sock_send_sem);
}
return true;
}
static void sock_notif_cb_work(struct k_work *work)
{
struct hl7800_socket *sock = NULL;
struct k_work_delayable *dwork;
dwork = k_work_delayable_from_work(work);
sock = CONTAINER_OF(dwork, struct hl7800_socket, notif_work);
hl7800_lock();
/* send null packet */
if (sock->recv_pkt != NULL) {
/* we are in the middle of RX,
* requeue this and try again
*/
k_work_reschedule_for_queue(&hl7800_workq, &sock->notif_work,
MDM_SOCK_NOTIF_DELAY);
} else {
if (sock->type == SOCK_STREAM) {
LOG_DBG("Sock %d trigger NULL packet", sock->socket_id);
k_work_submit_to_queue(&hl7800_workq, &sock->recv_cb_work);
}
}
hl7800_unlock();
}
/* Handler: +KTCP_NOTIF/+KUDP_NOTIF */
static bool on_cmd_sock_notif(struct net_buf **buf, uint16_t len)
{
struct hl7800_socket *sock = NULL;
char *delim;
char value[MDM_MAX_RESP_SIZE];
size_t out_len;
uint8_t notif_val;
bool err = false;
bool trigger_sem = true;
int id;
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
/* find ',' because this is the format we expect */
delim = strchr(value, ',');
if (!delim) {
LOG_ERR("+K**P_NOTIF could not find ','");
goto done;
}
id = strtol(value, NULL, 10);
notif_val = strtol(delim + 1, NULL, 10);
if (notif_val == HL7800_TCP_DISCON) {
LOG_DBG("+K**P_NOTIF: %d,%d", id, notif_val);
} else {
LOG_WRN("+K**P_NOTIF: %d,%d", id, notif_val);
}
sock = socket_from_id(id);
if (!sock) {
goto done;
}
switch (notif_val) {
case HL7800_TCP_DATA_SND:
err = false;
sock->error = 0;
break;
case HL7800_TCP_DISCON:
trigger_sem = false;
err = true;
sock->error = -ENOTCONN;
break;
default:
iface_ctx.network_dropped = true;
err = true;
sock->error = -EIO;
break;
}
if (err) {
/* Send NULL packet to callback to notify upper stack layers
* that the peer closed the connection or there was an error.
* This is so an app will not get stuck in recv() forever.
* Let's do the callback processing in a different work queue
* so RX is not delayed.
*/
k_work_reschedule_for_queue(&hl7800_workq, &sock->notif_work, MDM_SOCK_NOTIF_DELAY);
if (trigger_sem) {
k_sem_give(&sock->sock_send_sem);
}
if (iface_ctx.network_dropped) {
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.iface_status_work,
IFACE_WORK_DELAY);
}
}
done:
return true;
}
static int delete_socket(struct hl7800_socket *sock, enum net_sock_type type, uint8_t id)
{
char cmd[sizeof("AT+KUDPCLOSE=###")];
if (type == SOCK_STREAM) {
snprintk(cmd, sizeof(cmd), "AT+KTCPDEL=%d", id);
} else if (type == SOCK_DGRAM) {
snprintk(cmd, sizeof(cmd), "AT+KUDPCLOSE=%d", id);
}
return send_at_cmd(sock, cmd, MDM_CMD_SEND_TIMEOUT, 0, false);
}
static void delete_untracked_socket_work_cb(struct k_work *item)
{
struct stale_socket *sock = NULL;
do {
sock = dequeue_stale_socket();
if (sock != NULL) {
LOG_DBG("Delete untracked socket [%d]", sock->id);
delete_socket(NULL, sock->type, sock->id);
free_stale_socket(sock);
}
} while (sock != NULL);
}
static bool on_cmd_sockcreate(enum net_sock_type type, struct net_buf **buf, uint16_t len)
{
size_t out_len;
char value[MDM_MAX_RESP_SIZE];
struct hl7800_socket *sock = NULL;
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
value[out_len] = 0;
iface_ctx.last_socket_id = strtol(value, NULL, 10);
if (type == SOCK_STREAM) {
LOG_DBG("+KTCPCFG: %d", iface_ctx.last_socket_id);
} else if (type == SOCK_DGRAM) {
LOG_DBG("+KUDPCFG: %d", iface_ctx.last_socket_id);
}
/* check if the socket has been created already */
sock = socket_from_id(iface_ctx.last_socket_id);
if (!sock) {
LOG_DBG("look up new socket by creation id");
sock = socket_from_id(MDM_CREATE_SOCKET_ID);
if (!sock) {
if (queue_stale_socket(type, iface_ctx.last_socket_id) == 0) {
/* delay some time before socket cleanup in case there
* are multiple sockets to cleanup
*/
k_work_reschedule_for_queue(&hl7800_workq,
&iface_ctx.delete_untracked_socket_work,
SOCKET_CLEANUP_WORK_DELAY);
}
goto done;
}
}
sock->socket_id = iface_ctx.last_socket_id;
sock->created = true;
sock->reconfig = false;
/* don't give back semaphore -- OK to follow */
done:
return true;
}
/* Handler: +KTCPCFG: <session_id> */
static bool on_cmd_sock_tcp_create(struct net_buf **buf, uint16_t len)
{
return on_cmd_sockcreate(SOCK_STREAM, buf, len);
}
/* Handler: +KUDPCFG: <session_id> */
static bool on_cmd_sock_udp_create(struct net_buf **buf, uint16_t len)
{
return on_cmd_sockcreate(SOCK_DGRAM, buf, len);
}
static void sockreadrecv_cb_work(struct k_work *work)
{
struct hl7800_socket *sock = NULL;
struct net_pkt *pkt;
sock = CONTAINER_OF(work, struct hl7800_socket, recv_cb_work);
LOG_DBG("Sock %d RX CB (size: %zd)", sock->socket_id,
(sock->recv_pkt != NULL) ? net_pkt_get_len(sock->recv_pkt) : 0);
/* return data */
pkt = sock->recv_pkt;
sock->recv_pkt = NULL;
if (sock->recv_cb) {
sock->recv_cb(sock->context, pkt, NULL, NULL, 0,
sock->recv_user_data);
} else {
net_pkt_unref(pkt);
}
}
static void sock_read(struct net_buf **buf, uint16_t len)
{
struct hl7800_socket *sock = NULL;
struct net_buf *frag;
uint8_t c = 0U;
int i, hdr_len;
char ok_resp[sizeof(OK_STRING)];
char eof[sizeof(EOF_PATTERN)];
size_t out_len;
sock = socket_from_id(iface_ctx.last_socket_id);
if (!sock) {
LOG_ERR("Socket not found! (%d)", iface_ctx.last_socket_id);
goto exit;
}
if (sock->error != 0) {
/* cancel notif work and restart */
k_work_reschedule_for_queue(&hl7800_workq, &sock->notif_work,
MDM_SOCK_NOTIF_DELAY);
}
LOG_DBG("Socket %d RX %u bytes", sock->socket_id, sock->rx_size);
/* remove ending \r\n from last CONNECT */
if (net_buf_frags_len(*buf) < 2) {
/* wait for \n to be RXd. \r was already RXd. */
wait_for_modem_data(buf, 0, 1);
}
/* remove \r\n */
net_buf_remove(buf, 2);
if (!*buf) {
wait_for_modem_data(buf, 0, sock->rx_size);
}
LOG_DBG("Processing RX, buf len: %zd", net_buf_frags_len(*buf));
/* allocate an RX pkt */
sock->recv_pkt = net_pkt_rx_alloc_with_buffer(
net_context_get_iface(sock->context), sock->rx_size,
sock->family, sock->ip_proto, BUF_ALLOC_TIMEOUT);
if (!sock->recv_pkt) {
LOG_ERR("Failed net_pkt_get_reserve_rx!");
goto done;
}
/* set pkt data */
net_pkt_set_context(sock->recv_pkt, sock->context);
/* add IP / protocol headers */
hdr_len = pkt_setup_ip_data(sock->recv_pkt, sock);
/* receive data */
for (i = 0; i < sock->rx_size; i++) {
/* pull data from buf and advance to the next frag if needed */
c = net_buf_get_u8(buf);
/* write data to packet */
if (net_pkt_write_u8(sock->recv_pkt, c)) {
LOG_ERR("Unable to add data! Aborting! Bytes RXd:%d",
i);
goto rx_err;
}
if (!*buf && i < sock->rx_size) {
LOG_DBG("RX more data, bytes RXd:%d", i + 1);
/* wait for at least one more byte */
wait_for_modem_data(buf, 0, 1);
if (!*buf) {
LOG_ERR("No data in buf!");
break;
}
}
}
LOG_DBG("Got all data, get EOF and OK (buf len:%zd)",
net_buf_frags_len(*buf));
if (!*buf || (net_buf_frags_len(*buf) < strlen(EOF_PATTERN))) {
wait_for_modem_data(buf, net_buf_frags_len(*buf),
strlen(EOF_PATTERN));
if (!*buf) {
LOG_WRN("No EOF present");
goto all_rx_data;
}
}
out_len = net_buf_linearize(eof, sizeof(eof), *buf, 0,
strlen(EOF_PATTERN));
eof[out_len] = 0;
/* remove EOF pattern from buffer */
net_buf_remove(buf, strlen(EOF_PATTERN));
if (strcmp(eof, EOF_PATTERN)) {
LOG_WRN("Could not find EOF [%s]", eof);
}
/* Make sure we have \r\nOK\r\n length in the buffer */
if (!*buf || (net_buf_frags_len(*buf) < strlen(OK_STRING) + 4)) {
wait_for_modem_data(buf, net_buf_frags_len(*buf),
strlen(OK_STRING) + 4);
if (!*buf) {
LOG_WRN("No OK present");
goto all_rx_data;
}
}
frag = NULL;
len = net_buf_findcrlf(*buf, &frag);
if (!frag) {
LOG_WRN("Unable to find OK start");
goto all_rx_data;
}
/* remove \r\n before OK */
net_buf_skipcrlf(buf);
out_len = net_buf_linearize(ok_resp, sizeof(ok_resp), *buf, 0,
strlen(OK_STRING));
ok_resp[out_len] = 0;
/* remove the message from the buffer */
net_buf_remove(buf, strlen(OK_STRING));
if (strcmp(ok_resp, OK_STRING)) {
LOG_WRN("Could not find OK [%s]", ok_resp);
}
/* remove \r\n after OK */
net_buf_skipcrlf(buf);
all_rx_data:
net_pkt_cursor_init(sock->recv_pkt);
net_pkt_set_overwrite(sock->recv_pkt, true);
if (hdr_len > 0) {
net_pkt_skip(sock->recv_pkt, hdr_len);
}
/* Let's do the callback processing in a different work queue in
* case the app takes a long time.
*/
k_work_submit_to_queue(&hl7800_workq, &sock->recv_cb_work);
LOG_DBG("Sock %d RX done", sock->socket_id);
goto done;
rx_err:
net_pkt_unref(sock->recv_pkt);
sock->recv_pkt = NULL;
done:
if (sock->type == SOCK_STREAM) {
if (sock->error == 0) {
sock->state = SOCK_CONNECTED;
}
} else {
sock->state = SOCK_IDLE;
}
exit:
allow_sleep(true);
hl7800_TX_unlock();
}
static bool on_cmd_connect(struct net_buf **buf, uint16_t len)
{
bool remove_data_from_buffer = true;
struct hl7800_socket *sock = NULL;
sock = socket_from_id(iface_ctx.last_socket_id);
if (!sock) {
LOG_ERR("Sock (%d) not found", iface_ctx.last_socket_id);
goto done;
}
if (sock->state == SOCK_RX) {
remove_data_from_buffer = false;
sock_read(buf, len);
} else {
k_sem_give(&sock->sock_send_sem);
}
done:
return remove_data_from_buffer;
}
static int start_socket_rx(struct hl7800_socket *sock, uint16_t rx_size)
{
char sendbuf[sizeof("AT+KTCPRCV=+#########,#####")];
if ((sock->socket_id <= 0) || (sock->rx_size <= 0)) {
LOG_WRN("Cannot start socket RX, ID: %d rx size: %d",
sock->socket_id, sock->rx_size);
return -1;
}
LOG_DBG("Start socket RX ID:%d size:%d", sock->socket_id, rx_size);
sock->state = SOCK_RX;
if (sock->type == SOCK_DGRAM) {
#if defined(CONFIG_NET_IPV4)
if (rx_size > (net_if_get_mtu(iface_ctx.iface) - NET_IPV4UDPH_LEN)) {
sock->rx_size =
net_if_get_mtu(iface_ctx.iface) - NET_IPV4UDPH_LEN;
}
#endif
#if defined(CONFIG_NET_IPV6)
if (rx_size > (net_if_get_mtu(iface_ctx.iface) - NET_IPV6UDPH_LEN)) {
sock->rx_size =
net_if_get_mtu(iface_ctx.iface) - NET_IPV6UDPH_LEN;
}
#endif
snprintk(sendbuf, sizeof(sendbuf), "AT+KUDPRCV=%d,%u",
sock->socket_id, rx_size);
} else {
#if defined(CONFIG_NET_IPV4)
if (rx_size > (net_if_get_mtu(iface_ctx.iface) - NET_IPV4TCPH_LEN)) {
sock->rx_size =
net_if_get_mtu(iface_ctx.iface) - NET_IPV4TCPH_LEN;
}
#endif
#if defined(CONFIG_NET_IPV6)
if (rx_size > (net_if_get_mtu(iface_ctx.iface) - NET_IPV6TCPH_LEN)) {
sock->rx_size =
net_if_get_mtu(iface_ctx.iface) - NET_IPV6TCPH_LEN;
}
#endif
snprintk(sendbuf, sizeof(sendbuf), "AT+KTCPRCV=%d,%u",
sock->socket_id, sock->rx_size);
}
/* Send AT+K**PRCV, The modem
* will respond with "CONNECT" and the data requested
* and then "OK" or "ERROR".
* The rest of the data processing will be handled
* once CONNECT is RXd.
*/
send_at_cmd(sock, sendbuf, K_NO_WAIT, 0, false);
return 0;
}
static void sock_rx_data_cb_work(struct k_work *work)
{
struct hl7800_socket *sock = NULL;
int rc;
sock = CONTAINER_OF(work, struct hl7800_socket, rx_data_work);
hl7800_lock();
wakeup_hl7800();
/* start RX */
rc = start_socket_rx(sock, sock->rx_size);
/* Only unlock the RX because we just locked it above.
* At the end of socket RX, the TX will be unlocked.
*/
hl7800_RX_unlock();
if (rc < 0) {
/* we didn't start socket RX so unlock TX now. */
hl7800_TX_unlock();
}
}
/* Handler: +KTCP_DATA/+KUDP_DATA: <socket_id>,<left_bytes> */
static bool on_cmd_sockdataind(struct net_buf **buf, uint16_t len)
{
int socket_id, left_bytes, rc;
size_t out_len;
char *delim;
char value[sizeof("##,####")];
struct hl7800_socket *sock = NULL;
bool unlock = false;
bool defer_rx = false;
if (!hl7800_TX_locked()) {
hl7800_TX_lock();
unlock = true;
} else {
defer_rx = true;
}
out_len = net_buf_linearize(value, sizeof(value) - 1, *buf, 0, len);
value[out_len] = 0;
/* First comma separator marks the end of socket_id */
delim = strchr(value, ',');
if (!delim) {
LOG_ERR("Missing comma");
goto error;
}
/* replace comma with null */
*delim++ = '\0';
socket_id = strtol(value, NULL, 0);
/* second param is for left_bytes */
left_bytes = strtol(delim, NULL, 0);
sock = socket_from_id(socket_id);
if (!sock) {
LOG_ERR("Unable to find socket_id:%d", socket_id);
goto error;
}
sock->rx_size = left_bytes;
if (defer_rx) {
LOG_DBG("Defer socket RX -> ID: %d bytes: %u", socket_id,
left_bytes);
k_work_submit_to_queue(&hl7800_workq, &sock->rx_data_work);
} else {
if (left_bytes > 0) {
rc = start_socket_rx(sock, left_bytes);
if (rc < 0) {
goto error;
}
goto done;
}
}
error:
if (unlock) {
hl7800_TX_unlock();
}
done:
return true;
}
/* Handler: +WDSI: ## */
static bool on_cmd_device_service_ind(struct net_buf **buf, uint16_t len)
{
char value[MDM_MAX_RESP_SIZE];
size_t out_len;
memset(value, 0, sizeof(value));
out_len = net_buf_linearize(value, sizeof(value), *buf, 0, len);
if (out_len > 0) {
iface_ctx.device_services_ind = strtol(value, NULL, 10);
}
LOG_INF("+WDSI: %d", iface_ctx.device_services_ind);
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
if (iface_ctx.device_services_ind == WDSI_PKG_DOWNLOADED) {
k_work_submit_to_queue(&hl7800_workq,
&iface_ctx.finish_fw_update_work);
}
#endif
return true;
}
static inline struct net_buf *read_rx_allocator(k_timeout_t timeout,
void *user_data)
{
return net_buf_alloc((struct net_buf_pool *)user_data, timeout);
}
static size_t hl7800_read_rx(struct net_buf **buf)
{
uint8_t uart_buffer[CONFIG_MODEM_HL7800_RECV_BUF_SIZE];
size_t bytes_read, total_read;
int ret;
uint16_t rx_len;
bytes_read = 0, total_read = 0;
/* read all of the data from mdm_receiver */
while (true) {
ret = mdm_receiver_recv(&iface_ctx.mdm_ctx, uart_buffer,
sizeof(uart_buffer), &bytes_read);
if (ret < 0 || bytes_read == 0) {
/* mdm_receiver buffer is empty */
break;
}
if (IS_ENABLED(HL7800_ENABLE_VERBOSE_MODEM_RECV_HEXDUMP)) {
LOG_HEXDUMP_DBG((const uint8_t *)&uart_buffer,
bytes_read, "HL7800 RX");
}
/* make sure we have storage */
if (!*buf) {
*buf = net_buf_alloc(&mdm_recv_pool, BUF_ALLOC_TIMEOUT);
if (!*buf) {
LOG_ERR("Can't allocate RX data! "
"Skipping data!");
break;
}
}
rx_len =
net_buf_append_bytes(*buf, bytes_read, uart_buffer,
BUF_ALLOC_TIMEOUT,
read_rx_allocator, &mdm_recv_pool);
if (rx_len < bytes_read) {
LOG_ERR("Data was lost! read %u of %zu!", rx_len,
bytes_read);
}
total_read += bytes_read;
}
return total_read;
}
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
static void finish_fw_update_work_callback(struct k_work *item)
{
ARG_UNUSED(item);
send_at_cmd(NULL, "AT+WDSR=4", MDM_CMD_SEND_TIMEOUT, 0, false);
iface_ctx.fw_updated = true;
set_fota_state(HL7800_FOTA_INSTALL);
hl7800_unlock();
}
static uint8_t calc_fw_update_crc(uint8_t *ptr, int count)
{
uint8_t crc = 0;
unsigned char l;
uint16_t i = 0;
while (i < count) {
l = *ptr;
crc += l;
++ptr;
++i;
}
return crc;
}
static int send_fw_update_packet(struct xmodem_packet *pkt)
{
generate_fota_count_event();
LOG_DBG("Send FW update packet %d,%d", pkt->id, iface_ctx.fw_packet_count);
return mdm_receiver_send(&iface_ctx.mdm_ctx, (const uint8_t *)pkt,
XMODEM_PACKET_SIZE);
}
static int prepare_and_send_fw_packet(void)
{
int ret = 0;
int read_res;
iface_ctx.fw_packet.id_complement = 0xFF - iface_ctx.fw_packet.id;
ret = fs_seek(&iface_ctx.fw_update_file, iface_ctx.file_pos, FS_SEEK_SET);
if (ret < 0) {
set_fota_state(HL7800_FOTA_FILE_ERROR);
LOG_ERR("Could not seek to offset %d of file", iface_ctx.file_pos);
return ret;
}
read_res = fs_read(&iface_ctx.fw_update_file, iface_ctx.fw_packet.data,
XMODEM_DATA_SIZE);
if (read_res < 0) {
set_fota_state(HL7800_FOTA_FILE_ERROR);
LOG_ERR("Failed to read fw update file [%d]", read_res);
return ret;
} else if (read_res < XMODEM_DATA_SIZE) {
set_fota_state(HL7800_FOTA_PAD);
fs_close(&iface_ctx.fw_update_file);
/* pad rest of data */
for (int i = read_res; i < XMODEM_DATA_SIZE; i++) {
iface_ctx.fw_packet.data[i] = XMODEM_PAD_VALUE;
}
}
iface_ctx.fw_packet.crc =
calc_fw_update_crc(iface_ctx.fw_packet.data, XMODEM_DATA_SIZE);
send_fw_update_packet(&iface_ctx.fw_packet);
iface_ctx.file_pos += read_res;
iface_ctx.fw_packet_count++;
iface_ctx.fw_packet.id++;
return ret;
}
static void process_fw_update_rx(struct net_buf **rx_buf)
{
static uint8_t xm_msg;
uint8_t eot = XM_EOT;
xm_msg = net_buf_get_u8(rx_buf);
if (xm_msg == XM_NACK) {
if (iface_ctx.fw_update_state == HL7800_FOTA_START) {
/* send first FW update packet */
set_fota_state(HL7800_FOTA_WIP);
iface_ctx.file_pos = 0;
iface_ctx.fw_packet_count = 1;
iface_ctx.fw_packet.id = 1;
iface_ctx.fw_packet.preamble = XM_SOH_1K;
prepare_and_send_fw_packet();
} else if (iface_ctx.fw_update_state == HL7800_FOTA_WIP) {
LOG_DBG("RX FW update NACK");
/* resend last packet */
send_fw_update_packet(&iface_ctx.fw_packet);
}
} else if (xm_msg == XM_ACK) {
LOG_DBG("RX FW update ACK");
if (iface_ctx.fw_update_state == HL7800_FOTA_WIP) {
/* send next FW update packet */
prepare_and_send_fw_packet();
} else if (iface_ctx.fw_update_state == HL7800_FOTA_PAD) {
set_fota_state(HL7800_FOTA_SEND_EOT);
mdm_receiver_send(&iface_ctx.mdm_ctx, &eot, sizeof(eot));
}
} else {
LOG_WRN("RX unhandled FW update value: %02x", xm_msg);
}
}
#endif /* CONFIG_MODEM_HL7800_FW_UPDATE */
/* RX thread */
static void hl7800_rx(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p1);
ARG_UNUSED(p2);
ARG_UNUSED(p3);
struct net_buf *rx_buf = NULL;
struct net_buf *frag = NULL;
int i, cmp_res;
uint16_t len;
size_t out_len;
bool cmd_handled = false;
static char rx_msg[MDM_HANDLER_MATCH_MAX_LEN];
bool unlock = false;
bool remove_line_from_buf = true;
#ifdef HL7800_LOG_UNHANDLED_RX_MSGS
char msg[MDM_MAX_RESP_SIZE];
#endif
static const struct cmd_handler handlers[] = {
/* MODEM Information */
CMD_HANDLER("AT+CGMI", atcmdinfo_manufacturer),
CMD_HANDLER("AT+CGMM", atcmdinfo_model),
CMD_HANDLER("AT+CGMR", atcmdinfo_revision),
CMD_HANDLER("AT+CGSN", atcmdinfo_imei),
CMD_HANDLER("AT+KGSN=3", atcmdinfo_serial_number),
CMD_HANDLER("+KCELLMEAS: ", atcmdinfo_rssi),
CMD_HANDLER("+CGCONTRDP: ", atcmdinfo_ipaddr),
CMD_HANDLER("+COPS: ", atcmdinfo_operator_status),
CMD_HANDLER("+KSRAT: ", radio_tech_status),
CMD_HANDLER("+KBNDCFG: ", radio_band_configuration),
CMD_HANDLER("+KBND: ", radio_active_bands),
CMD_HANDLER("+CCID: ", atcmdinfo_iccid),
CMD_HANDLER("ACTIVE PROFILE:", atcmdinfo_active_profile),
CMD_HANDLER("STORED PROFILE 0:", atcmdinfo_stored_profile0),
CMD_HANDLER("STORED PROFILE 1:", atcmdinfo_stored_profile1),
CMD_HANDLER("+WPPP: 1,1,", atcmdinfo_pdp_authentication_cfg),
CMD_HANDLER("+CGDCONT: 1", atcmdinfo_pdp_context),
CMD_HANDLER("AT+CEREG?", network_report_query),
CMD_HANDLER("+KCARRIERCFG: ", operator_index_query),
CMD_HANDLER("AT+CIMI", atcmdinfo_imsi),
CMD_HANDLER("+CFUN: ", modem_functionality),
CMD_HANDLER("%MEAS: ", survey_status),
CMD_HANDLER("+CCLK: ", rtc_query),
/* UNSOLICITED modem information */
/* mobile startup report */
CMD_HANDLER("+KSUP: ", startup_report),
/* network status */
CMD_HANDLER("+CEREG: ", network_report),
/* SOLICITED CMD AND SOCKET RESPONSES */
CMD_HANDLER("OK", sockok),
CMD_HANDLER("ERROR", sockerror),
/* SOLICITED SOCKET RESPONSES */
CMD_HANDLER("+CME ERROR: ", sock_error_code),
CMD_HANDLER("+CMS ERROR: ", sock_error_code),
CMD_HANDLER("+CEER: ", sockerror),
CMD_HANDLER("+KTCPCFG: ", sock_tcp_create),
CMD_HANDLER("+KUDPCFG: ", sock_udp_create),
CMD_HANDLER(CONNECT_STRING, connect),
CMD_HANDLER("NO CARRIER", sockerror),
/* UNSOLICITED SOCKET RESPONSES */
CMD_HANDLER("+KTCP_IND: ", ktcp_ind),
CMD_HANDLER("+KUDP_IND: ", kudp_ind),
CMD_HANDLER("+KTCP_NOTIF: ", sock_notif),
CMD_HANDLER("+KUDP_NOTIF: ", sock_notif),
CMD_HANDLER("+KTCP_DATA: ", sockdataind),
CMD_HANDLER("+KUDP_DATA: ", sockdataind),
/* FIRMWARE UPDATE RESPONSES */
CMD_HANDLER("+WDSI: ", device_service_ind),
#ifdef CONFIG_MODEM_HL7800_GPS
CMD_HANDLER("+GNSSEV: ", gps_event),
CMD_HANDLER("Latitude: ", latitude),
CMD_HANDLER("Longitude: ", longitude),
CMD_HANDLER("GpsTime: ", gps_time),
CMD_HANDLER("FixType: ", fix_type),
CMD_HANDLER("HEPE: ", hepe),
CMD_HANDLER("Altitude: ", altitude),
CMD_HANDLER("AltUnc: ", alt_unc),
CMD_HANDLER("Direction: ", direction),
CMD_HANDLER("HorSpeed: ", hor_speed),
CMD_HANDLER("VerSpeed: ", ver_speed),
#endif
#ifdef CONFIG_MODEM_HL7800_POLTE
CMD_HANDLER("%POLTEEVU: \"REGISTER\",0,", polte_registration),
CMD_HANDLER("%POLTECMD: \"LOCATE\",", polte_locate_cmd_rsp),
CMD_HANDLER("%POLTEEVU: \"LOCATION\",", polte_location),
#endif
};
while (true) {
/* wait for incoming data */
(void)k_sem_take(&iface_ctx.mdm_ctx.rx_sem, K_FOREVER);
hl7800_read_rx(&rx_buf);
/* If an external module hasn't locked the command processor,
* then do so now.
*/
if (!hl7800_RX_locked()) {
hl7800_RX_lock();
unlock = true;
} else {
unlock = false;
}
while (rx_buf) {
remove_line_from_buf = true;
cmd_handled = false;
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
if ((iface_ctx.fw_update_state == HL7800_FOTA_START) ||
(iface_ctx.fw_update_state == HL7800_FOTA_WIP) ||
(iface_ctx.fw_update_state == HL7800_FOTA_PAD)) {
process_fw_update_rx(&rx_buf);
if (!rx_buf) {
break;
}
}
#endif
net_buf_skipcrlf(&rx_buf);
if (!rx_buf) {
break;
}
frag = NULL;
len = net_buf_findcrlf(rx_buf, &frag);
if (!frag) {
break;
}
out_len = net_buf_linearize(rx_msg, sizeof(rx_msg),
rx_buf, 0, len);
/* look for matching data handlers */
i = -1;
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
if (iface_ctx.search_no_id_resp) {
cmp_res = strncmp(iface_ctx.no_id_resp_cmd,
handlers[i].cmd,
handlers[i].cmd_len);
} else {
cmp_res =
strncmp(rx_msg, handlers[i].cmd,
handlers[i].cmd_len);
}
if (cmp_res == 0) {
/* found a matching handler */
/* skip cmd_len */
if (!iface_ctx.search_no_id_resp) {
rx_buf = net_buf_skip(
rx_buf,
handlers[i].cmd_len);
}
/* locate next cr/lf */
frag = NULL;
len = net_buf_findcrlf(rx_buf, &frag);
if (!frag) {
break;
}
LOG_DBG("HANDLE %s (len:%u)",
handlers[i].cmd, len);
/* call handler */
if (handlers[i].func) {
remove_line_from_buf =
handlers[i].func(
&rx_buf, len);
}
cmd_handled = true;
iface_ctx.search_no_id_resp = false;
frag = NULL;
/* make sure buf still has data */
if (!rx_buf) {
break;
}
/* We've handled the current line
* and need to exit the "search for
* handler loop". Let's skip any
* "extra" data and look for the next
* CR/LF, leaving us ready for the
* next handler search.
*/
len = net_buf_findcrlf(rx_buf, &frag);
break;
}
}
/* Handle unhandled commands */
if (IS_ENABLED(HL7800_LOG_UNHANDLED_RX_MSGS) &&
!cmd_handled && frag && len > 1) {
out_len = net_buf_linearize(msg, sizeof(msg),
rx_buf, 0, len);
msg[out_len] = 0;
LOG_HEXDUMP_DBG((const uint8_t *)&msg, len,
"UNHANDLED RX");
}
if (remove_line_from_buf && frag && rx_buf) {
/* clear out processed line (buffers) */
net_buf_remove(&rx_buf, len);
}
}
if (unlock) {
hl7800_RX_unlock();
}
/* give up time if we have a solid stream of data */
k_yield();
}
}
static void shutdown_uart(void)
{
#ifdef CONFIG_PM_DEVICE
int rc;
if (iface_ctx.uart_on) {
HL7800_IO_DBG_LOG("Power OFF the UART");
uart_irq_rx_disable(iface_ctx.mdm_ctx.uart_dev);
rc = pm_device_action_run(iface_ctx.mdm_ctx.uart_dev, PM_DEVICE_ACTION_SUSPEND);
if (rc) {
LOG_ERR("Error disabling UART peripheral (%d)", rc);
uart_irq_rx_enable(iface_ctx.mdm_ctx.uart_dev);
} else {
iface_ctx.uart_on = false;
}
}
#endif
}
static void power_on_uart(void)
{
#ifdef CONFIG_PM_DEVICE
int rc;
if (!iface_ctx.uart_on) {
HL7800_IO_DBG_LOG("Power ON the UART");
rc = pm_device_action_run(iface_ctx.mdm_ctx.uart_dev, PM_DEVICE_ACTION_RESUME);
if (rc) {
LOG_ERR("Error enabling UART peripheral (%d)", rc);
uart_irq_rx_disable(iface_ctx.mdm_ctx.uart_dev);
} else {
uart_irq_rx_enable(iface_ctx.mdm_ctx.uart_dev);
iface_ctx.uart_on = true;
}
}
#endif
}
/* Make sure all IO voltages are removed for proper reset. */
static void prepare_io_for_reset(void)
{
HL7800_IO_DBG_LOG("Preparing IO for reset/sleep");
shutdown_uart();
modem_assert_wake(false);
modem_assert_pwr_on(false);
modem_assert_fast_shutd(false);
iface_ctx.wait_for_KSUP = true;
iface_ctx.wait_for_KSUP_tries = 0;
}
static void mdm_vgpio_work_cb(struct k_work *item)
{
ARG_UNUSED(item);
hl7800_lock();
if (!iface_ctx.vgpio_state) {
if (iface_ctx.desired_sleep_level == HL7800_SLEEP_HIBERNATE ||
iface_ctx.desired_sleep_level == HL7800_SLEEP_LITE_HIBERNATE) {
if (iface_ctx.sleep_state != iface_ctx.desired_sleep_level) {
set_sleep_state(iface_ctx.desired_sleep_level);
}
}
if (iface_ctx.iface && iface_ctx.initialized &&
iface_ctx.low_power_mode != HL7800_LPM_PSM) {
net_if_carrier_off(iface_ctx.iface);
}
}
hl7800_unlock();
}
void mdm_vgpio_callback_isr(const struct device *port, struct gpio_callback *cb,
uint32_t pins)
{
iface_ctx.vgpio_state = read_pin(1, &hl7800_cfg.gpio[MDM_VGPIO]);
HL7800_IO_DBG_LOG("VGPIO:%d", iface_ctx.vgpio_state);
if (!iface_ctx.vgpio_state) {
prepare_io_for_reset();
if (!iface_ctx.restarting && iface_ctx.initialized) {
iface_ctx.reconfig_IP_connection = true;
}
check_hl7800_awake();
} else {
if (iface_ctx.off) {
return;
}
/* The peripheral must be enabled in ISR context
* because the driver may be
* waiting for +KSUP or waiting to send commands.
* This can occur, for example, during a modem reset.
*/
power_on_uart();
/* Keep the modem awake to see if it has anything to send to us. */
allow_sleep(false);
/* Allow the modem to go back to sleep if it was the one who
* sourced the CTS transition.
*/
allow_sleep(true);
}
/* When the network state changes a semaphore must be taken.
* This can't be done in interrupt context because the wait time != 0.
*/
k_work_submit_to_queue(&hl7800_workq, &iface_ctx.mdm_vgpio_work);
}
void mdm_uart_dsr_callback_isr(const struct device *port,
struct gpio_callback *cb, uint32_t pins)
{
iface_ctx.dsr_state = read_pin(1, &hl7800_cfg.gpio[MDM_UART_DSR]);
HL7800_IO_DBG_LOG("MDM_UART_DSR:%d", iface_ctx.dsr_state);
}
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
static void mark_sockets_for_reconfig(void)
{
int i;
struct hl7800_socket *sock = NULL;
for (i = 0; i < MDM_MAX_SOCKETS; i++) {
sock = &iface_ctx.sockets[i];
if ((sock->context != NULL) && (sock->created)) {
/* mark socket as possibly needing re-configuration */
sock->reconfig = true;
}
}
}
#endif
void mdm_gpio6_callback_isr(const struct device *port, struct gpio_callback *cb,
uint32_t pins)
{
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
iface_ctx.gpio6_state = read_pin(1, &hl7800_cfg.gpio[MDM_GPIO6]);
HL7800_IO_DBG_LOG("MDM_GPIO6:%d", iface_ctx.gpio6_state);
if (!iface_ctx.gpio6_state) {
/* HL7800 is not awake, shut down UART to save power */
shutdown_uart();
iface_ctx.wait_for_KSUP = true;
iface_ctx.wait_for_KSUP_tries = 0;
iface_ctx.reconfig_IP_connection = true;
mark_sockets_for_reconfig();
/* TODO: may need to indicate all TCP connections lost here */
} else {
if (iface_ctx.off) {
return;
}
power_on_uart();
}
if ((iface_ctx.gpio6_callback != NULL) &&
((iface_ctx.desired_sleep_level == HL7800_SLEEP_HIBERNATE) ||
(iface_ctx.desired_sleep_level == HL7800_SLEEP_LITE_HIBERNATE))) {
iface_ctx.gpio6_callback(iface_ctx.gpio6_state);
}
check_hl7800_awake();
#else
HL7800_IO_DBG_LOG("Spurious gpio6 interrupt from the modem");
#endif
}
/**
* @brief Short spikes in CTS can be removed in the signal used by the application
*/
static int glitch_filter(int default_state, const struct gpio_dt_spec *spec,
uint32_t usec_to_wait, uint32_t max_iterations)
{
int i = 0;
int state1;
int state2;
do {
state1 = read_pin(-1, spec);
k_busy_wait(usec_to_wait);
state2 = read_pin(-1, spec);
i += 1;
} while (((state1 != state2) || (state1 < 0) || (state2 < 0)) && (i < max_iterations));
if (i >= max_iterations) {
LOG_WRN("glitch filter max iterations exceeded %d", i);
if (state1 < 0) {
if (state2 < 0) {
state1 = read_pin(default_state, spec);
} else {
state1 = state2;
}
}
}
return state1;
}
void mdm_uart_cts_callback(const struct device *port, struct gpio_callback *cb, uint32_t pins)
{
ARG_UNUSED(port);
ARG_UNUSED(cb);
ARG_UNUSED(pins);
iface_ctx.cts_state =
glitch_filter(0, &hl7800_cfg.gpio[MDM_UART_CTS],
CONFIG_MODEM_HL7800_CTS_FILTER_US,
CONFIG_MODEM_HL7800_CTS_FILTER_MAX_ITERATIONS);
/* CTS toggles A LOT,
* comment out the debug print unless we really need it.
*/
/* HL7800_IO_DBG_LOG("MDM_UART_CTS:%d", iface_ctx.cts_state); */
if ((iface_ctx.cts_callback != NULL) &&
(iface_ctx.desired_sleep_level == HL7800_SLEEP_SLEEP)) {
iface_ctx.cts_callback(iface_ctx.cts_state);
}
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
if (iface_ctx.cts_state) {
/* HL7800 is not awake, shut down UART to save power */
if (iface_ctx.allow_sleep) {
shutdown_uart();
}
} else {
if (iface_ctx.off) {
return;
}
if (iface_ctx.desired_sleep_level != HL7800_SLEEP_HIBERNATE) {
power_on_uart();
if (iface_ctx.sleep_state == HL7800_SLEEP_SLEEP) {
/* Wake up the modem to see if it has anything to send to us. */
allow_sleep(false);
/* Allow the modem to go back to sleep if it was the one who
* sourced the CTS transition.
*/
allow_sleep(true);
}
}
}
#endif
check_hl7800_awake();
}
static void modem_reset(void)
{
prepare_io_for_reset();
LOG_INF("Modem Reset");
/* Hard reset the modem */
gpio_pin_set_dt(&hl7800_cfg.gpio[MDM_RESET], 1);
/* >20 milliseconds required for reset low */
k_sleep(MDM_RESET_LOW_TIME);
iface_ctx.mdm_startup_reporting_on = false;
set_sleep_state(HL7800_SLEEP_UNINITIALIZED);
check_hl7800_awake();
set_network_state(HL7800_NOT_REGISTERED);
set_startup_state(HL7800_STARTUP_STATE_UNKNOWN);
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
if (iface_ctx.fw_update_state == HL7800_FOTA_REBOOT_AND_RECONFIGURE) {
set_fota_state(HL7800_FOTA_COMPLETE);
} else {
set_fota_state(HL7800_FOTA_IDLE);
}
#endif
k_sem_reset(&iface_ctx.mdm_awake);
iface_ctx.off = true;
}
static void modem_run(void)
{
LOG_INF("Modem Run");
gpio_pin_set_dt(&hl7800_cfg.gpio[MDM_RESET], 0);
k_sleep(MDM_RESET_HIGH_TIME);
iface_ctx.off = false;
allow_sleep(false);
}
static int modem_boot_handler(char *reason)
{
int ret;
LOG_DBG("%s", reason);
ret = k_sem_take(&iface_ctx.mdm_awake, MDM_BOOT_TIME);
if (ret) {
LOG_ERR("Err waiting for boot: %d, DSR: %u", ret,
iface_ctx.dsr_state);
return -1;
} else {
LOG_INF("Modem booted!");
}
/* Turn OFF EPS network registration status reporting because
* it isn't needed until after initialization is complete.
*/
SEND_AT_CMD_EXPECT_OK("AT+CEREG=0");
/* Determine if echo is on/off by reading the profile
* note: It wasn't clear how to read the
* active profile so all 3 are read.
*/
iface_ctx.mdm_echo_is_on = true;
SEND_AT_CMD_EXPECT_OK("AT&V");
if (iface_ctx.mdm_echo_is_on) {
/* Turn OFF echo (after boot/reset) because a profile
* hasn't been saved yet
*/
SEND_AT_CMD_EXPECT_OK("ATE0");
/* Save profile 0 */
SEND_AT_CMD_EXPECT_OK("AT&W");
/* Reread profiles so echo state can be checked again. */
SEND_AT_CMD_EXPECT_OK("AT&V");
}
__ASSERT(!iface_ctx.mdm_echo_is_on, "Echo should be off");
return 0;
error:
return ret;
}
/**
* @brief compares two version strings with any delimiter
*
* @param v1: version string 1
* @param v2: version string 2
*
* @retval 0 if equal, < 0 if v1 < v2, > 0 if v1 > v2.
*/
static int compare_versions(char *v1, const char *v2)
{
int result = 0;
char *tail1;
char *tail2;
unsigned long ver1, ver2;
/* loop through each level of the version string */
while (result == 0) {
/* extract leading version numbers */
ver1 = strtoul(v1, &tail1, 10);
ver2 = strtoul(v2, &tail2, 10);
/* if numbers differ, then set the result */
if (ver1 < ver2) {
result = -1;
} else if (ver1 > ver2) {
result = 1;
} else {
/* if numbers are the same, go to next level */
v1 = tail1;
v2 = tail2;
/* if we reach the end of both, then they are identical */
if (*v1 == '\0' && *v2 == '\0') {
break;
/* if we reach the end of one only, it is the smaller */
} else if (*v1 == '\0') {
result = -1;
} else if (*v2 == '\0') {
result = 1;
/* not at end ... so far they match so keep going */
} else {
v1++;
v2++;
}
}
}
return result;
}
static int setup_gprs_connection(char *access_point_name)
{
char cmd_string[sizeof("AT+KCNXCFG=1,\"GPRS\",\"\",,,"
"\"IPV4V6\"") +
MDM_HL7800_APN_MAX_SIZE];
int cmd_max_len = sizeof(cmd_string) - 1;
memset(cmd_string, 0, cmd_max_len);
strncat(cmd_string, "AT+KCNXCFG=1,\"GPRS\",\"", cmd_max_len);
strncat(cmd_string, access_point_name, cmd_max_len);
strncat(cmd_string, "\",,,\"", cmd_max_len);
strncat(cmd_string, MODEM_HL7800_ADDRESS_FAMILY "\"", cmd_max_len);
return send_at_cmd(NULL, cmd_string, MDM_CMD_SEND_TIMEOUT, 0, false);
}
static int set_bands(const char *bands, bool full_reboot)
{
int ret;
char cmd[sizeof("AT+KBNDCFG=#,####################")];
snprintk(cmd, sizeof(cmd), "AT+KBNDCFG=%d,%s", iface_ctx.mdm_rat, bands);
ret = send_at_cmd(NULL, cmd, MDM_CMD_SEND_TIMEOUT, MDM_DEFAULT_AT_CMD_RETRIES, false);
if (ret < 0) {
return ret;
}
if (!full_reboot) {
ret = send_at_cmd(NULL, "AT+CFUN=1,1", MDM_CMD_SEND_TIMEOUT,
MDM_DEFAULT_AT_CMD_RETRIES, false);
if (ret < 0) {
return ret;
}
ret = modem_boot_handler("LTE bands were just set");
} else {
k_work_reschedule_for_queue(&hl7800_workq, &iface_ctx.mdm_reset_work, K_NO_WAIT);
}
return ret;
}
int32_t mdm_hl7800_set_bands(const char *bands)
{
int ret, i;
char temp_bands[MDM_BAND_BITMAP_STR_LENGTH_MAX + 1];
int num_leading_zeros;
if ((bands == NULL) || (strlen(bands) > MDM_BAND_BITMAP_STR_LENGTH_MAX) ||
(strlen(bands) < MDM_BAND_BITMAP_STR_LENGTH_MIN)) {
return -EINVAL;
}
if (strlen(bands) < MDM_BAND_BITMAP_STR_LENGTH_MAX) {
num_leading_zeros = MDM_BAND_BITMAP_STR_LENGTH_MAX - strlen(bands);
for (i = 0; i < num_leading_zeros; i++) {
temp_bands[i] = '0';
if (i == (num_leading_zeros - 1)) {
strncpy(temp_bands + (i + 1), bands, sizeof(temp_bands) - (i + 1));
}
}
} else {
memcpy(temp_bands, bands, sizeof(temp_bands));
}
/* no need to set bands if settings match */
if (strncmp(temp_bands, iface_ctx.mdm_bands_string, sizeof(temp_bands)) == 0) {
return 0;
}
hl7800_lock();
ret = set_bands(temp_bands, true);
hl7800_unlock();
return ret;
}
static int modem_reset_and_configure(void)
{
int ret = 0;
bool sleep = false;
bool config_apn = false;
char *apn;
#ifdef CONFIG_MODEM_HL7800_EDRX
int edrx_act_type;
char set_edrx_msg[sizeof("AT+CEDRXS=2,4,\"0000\"")];
#endif
#if CONFIG_MODEM_HL7800_CONFIGURE_BANDS
uint16_t bands_top = 0;
uint32_t bands_middle = 0, bands_bottom = 0;
char new_bands[MDM_BAND_BITMAP_STR_LENGTH_MAX + 1];
#endif
#if CONFIG_MODEM_HL7800_PSM
const char TURN_ON_PSM[] =
"AT+CPSMS=1,,,\"" CONFIG_MODEM_HL7800_PSM_PERIODIC_TAU
"\",\"" CONFIG_MODEM_HL7800_PSM_ACTIVE_TIME "\"";
#endif
iface_ctx.restarting = true;
iface_ctx.dns_ready = false;
if (iface_ctx.iface) {
net_if_carrier_off(iface_ctx.iface);
}
hl7800_stop_rssi_work();
reboot:
modem_reset();
modem_run();
ret = modem_boot_handler("Initialization");
if (!iface_ctx.mdm_startup_reporting_on) {
/* Turn on mobile start-up reporting for next reset.
* It will indicate if SIM is present.
* Its value is saved in non-volatile memory on the HL7800.
*/
SEND_AT_CMD_EXPECT_OK("AT+KSREP=1");
goto reboot;
} else if (ret < 0) {
goto error;
}
/* turn on numeric error codes */
SEND_AT_CMD_EXPECT_OK("AT+CMEE=1");
/* modem revision */
SEND_COMPLEX_AT_CMD("AT+CGMR");
/* determine RAT command support */
ret = compare_versions(iface_ctx.mdm_revision, NEW_RAT_CMD_MIN_VERSION);
if (ret < 0) {
iface_ctx.new_rat_cmd_support = false;
} else {
iface_ctx.new_rat_cmd_support = true;
}
/* Query current Radio Access Technology (RAT) */
SEND_AT_CMD_EXPECT_OK("AT+KSRAT?");
/* If CONFIG_MODEM_HL7800_RAT_M1 or CONFIG_MODEM_HL7800_RAT_NB1, then
* set the radio mode. This is only done here if the driver has not been
* initialized (!iface_ctx.configured) yet because the public API also
* allows the RAT to be changed (and will reset the modem).
*/
#ifndef CONFIG_MODEM_HL7800_RAT_NO_CHANGE
if (!iface_ctx.configured) {
#if CONFIG_MODEM_HL7800_RAT_M1
if (iface_ctx.mdm_rat != MDM_RAT_CAT_M1) {
if (iface_ctx.new_rat_cmd_support) {
SEND_AT_CMD_ONCE_EXPECT_OK(SET_RAT_M1_CMD);
} else {
SEND_AT_CMD_ONCE_EXPECT_OK(
SET_RAT_M1_CMD_LEGACY);
}
if (ret >= 0) {
goto reboot;
}
}
#elif CONFIG_MODEM_HL7800_RAT_NB1
if (iface_ctx.mdm_rat != MDM_RAT_CAT_NB1) {
if (iface_ctx.new_rat_cmd_support) {
SEND_AT_CMD_ONCE_EXPECT_OK(SET_RAT_NB1_CMD);
} else {
SEND_AT_CMD_ONCE_EXPECT_OK(
SET_RAT_NB1_CMD_LEGACY);
}
if (ret >= 0) {
goto reboot;
}
}
#endif
}
#endif
SEND_AT_CMD_EXPECT_OK("AT+KBNDCFG?");
/* Configure LTE bands */
#if CONFIG_MODEM_HL7800_CONFIGURE_BANDS
#if CONFIG_MODEM_HL7800_BAND_1
bands_bottom |= 1 << 0;
#endif
#if CONFIG_MODEM_HL7800_BAND_2
bands_bottom |= 1 << 1;
#endif
#if CONFIG_MODEM_HL7800_BAND_3
bands_bottom |= 1 << 2;
#endif
#if CONFIG_MODEM_HL7800_BAND_4
bands_bottom |= 1 << 3;
#endif
#if CONFIG_MODEM_HL7800_BAND_5
bands_bottom |= 1 << 4;
#endif
#if CONFIG_MODEM_HL7800_BAND_8
bands_bottom |= 1 << 7;
#endif
#if CONFIG_MODEM_HL7800_BAND_9
bands_bottom |= 1 << 8;
#endif
#if CONFIG_MODEM_HL7800_BAND_10
bands_bottom |= 1 << 9;
#endif
#if CONFIG_MODEM_HL7800_BAND_12
bands_bottom |= 1 << 11;
#endif
#if CONFIG_MODEM_HL7800_BAND_13
bands_bottom |= 1 << 12;
#endif
#if CONFIG_MODEM_HL7800_BAND_14
bands_bottom |= 1 << 13;
#endif
#if CONFIG_MODEM_HL7800_BAND_17
bands_bottom |= 1 << 16;
#endif
#if CONFIG_MODEM_HL7800_BAND_18
bands_bottom |= 1 << 17;
#endif
#if CONFIG_MODEM_HL7800_BAND_19
bands_bottom |= 1 << 18;
#endif
#if CONFIG_MODEM_HL7800_BAND_20
bands_bottom |= 1 << 19;
#endif
#if CONFIG_MODEM_HL7800_BAND_25
bands_bottom |= 1 << 24;
#endif
#if CONFIG_MODEM_HL7800_BAND_26
bands_bottom |= 1 << 25;
#endif
#if CONFIG_MODEM_HL7800_BAND_27
bands_bottom |= 1 << 26;
#endif
#if CONFIG_MODEM_HL7800_BAND_28
bands_bottom |= 1 << 27;
#endif
#if CONFIG_MODEM_HL7800_BAND_66
bands_top |= 1 << 1;
#endif
/* Check if bands are configured correctly */
if (iface_ctx.mdm_bands_top != bands_top ||
iface_ctx.mdm_bands_middle != bands_middle ||
iface_ctx.mdm_bands_bottom != bands_bottom) {
if (iface_ctx.mdm_bands_top != bands_top) {
LOG_INF("Top band mismatch, want %04x got %04x",
bands_top, iface_ctx.mdm_bands_top);
}
if (iface_ctx.mdm_bands_middle != bands_middle) {
LOG_INF("Middle band mismatch, want %08x got %08x",
bands_middle, iface_ctx.mdm_bands_middle);
}
if (iface_ctx.mdm_bands_bottom != bands_bottom) {
LOG_INF("Bottom band mismatch, want %08x got %08x",
bands_bottom, iface_ctx.mdm_bands_bottom);
}
snprintk(new_bands, sizeof(new_bands),
"%0" STRINGIFY(MDM_TOP_BAND_SIZE) "x%0" STRINGIFY(
MDM_MIDDLE_BAND_SIZE) "x%0" STRINGIFY(MDM_BOTTOM_BAND_SIZE) "x",
bands_top, bands_middle, bands_bottom);
ret = set_bands(new_bands, false);
if (ret < 0) {
goto error;
}
}
#endif
/**
* Disable the radio until all config is done.
* This ensures all settings are applied during this session instead of on the next reboot.
*/
SEND_AT_CMD_EXPECT_OK("AT+CFUN=4,0");
iface_ctx.low_power_mode = HL7800_LPM_NONE;
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
/* enable GPIO6 low power monitoring */
SEND_AT_CMD_EXPECT_OK("AT+KHWIOCFG=3,1,6");
initialize_sleep_level();
ret = set_sleep_level();
if (ret < 0) {
goto error;
}
#if CONFIG_MODEM_HL7800_PSM
iface_ctx.low_power_mode = HL7800_LPM_PSM;
/* Turn off eDRX */
SEND_AT_CMD_EXPECT_OK("AT+CEDRXS=0");
SEND_AT_CMD_EXPECT_OK(TURN_ON_PSM);
#elif CONFIG_MODEM_HL7800_EDRX
iface_ctx.low_power_mode = HL7800_LPM_EDRX;
/* Turn off PSM */
SEND_AT_CMD_EXPECT_OK("AT+CPSMS=0");
/* turn on eDRX */
if (iface_ctx.mdm_rat == MDM_RAT_CAT_NB1) {
edrx_act_type = 5;
} else {
edrx_act_type = 4;
}
snprintk(set_edrx_msg, sizeof(set_edrx_msg), "AT+CEDRXS=1,%d,\"%s\"",
edrx_act_type, CONFIG_MODEM_HL7800_EDRX_VALUE);
SEND_AT_CMD_EXPECT_OK(set_edrx_msg);
#endif
sleep = true;
#else
/* Turn off sleep mode */
SEND_AT_CMD_EXPECT_OK("AT+KSLEEP=2");
/* Turn off PSM */
SEND_AT_CMD_EXPECT_OK("AT+CPSMS=0");
/* Turn off eDRX */
SEND_AT_CMD_EXPECT_OK("AT+CEDRXS=0");
#endif
/* modem manufacturer */
SEND_COMPLEX_AT_CMD("AT+CGMI");
/* modem model */
SEND_COMPLEX_AT_CMD("AT+CGMM");
/* query modem IMEI */
SEND_COMPLEX_AT_CMD("AT+CGSN");
/* query modem serial number */
SEND_COMPLEX_AT_CMD("AT+KGSN=3");
if (iface_ctx.mdm_startup_state != HL7800_STARTUP_STATE_SIM_NOT_PRESENT) {
/* query SIM ICCID */
SEND_AT_CMD_IGNORE_ERROR("AT+CCID?");
/* query SIM IMSI */
(void)send_at_cmd(NULL, "AT+CIMI", MDM_CMD_SEND_TIMEOUT, MDM_DEFAULT_AT_CMD_RETRIES,
true);
}
/* Query PDP context to get APN */
SEND_AT_CMD_EXPECT_OK("AT+CGDCONT?");
apn = iface_ctx.mdm_apn.value;
if (strcmp(iface_ctx.mdm_pdp_addr_fam, MODEM_HL7800_ADDRESS_FAMILY)) {
config_apn = true;
}
/* Query PDP authentication context to get APN username/password.
* Temporary Workaround - Ignore error
* On some modules this is returning an error and the response data.
*/
SEND_AT_CMD_IGNORE_ERROR("AT+WPPP?");
#if CONFIG_MODEM_HL7800_SET_APN_NAME_ON_STARTUP
if (!iface_ctx.configured) {
if (strncmp(iface_ctx.mdm_apn.value, CONFIG_MODEM_HL7800_APN_NAME,
MDM_HL7800_APN_MAX_STRLEN) != 0) {
apn = CONFIG_MODEM_HL7800_APN_NAME;
config_apn = true;
}
}
#endif
if (config_apn) {
/* set PDP context address family along with current APN */
ret = write_apn(apn);
if (ret < 0) {
goto error;
}
SEND_AT_CMD_EXPECT_OK("AT+CGDCONT?");
}
ret = setup_gprs_connection(iface_ctx.mdm_apn.value);
if (ret < 0) {
goto error;
}
/* query the network status in case we already registered */
SEND_COMPLEX_AT_CMD("AT+CEREG?");
/* Turn on EPS network registration status reporting */
SEND_AT_CMD_EXPECT_OK("AT+CEREG=4");
/* query all socket configs to cleanup any sockets that are not
* tracked by the driver
*/
SEND_AT_CMD_EXPECT_OK("AT+KTCPCFG?");
SEND_AT_CMD_EXPECT_OK("AT+KUDPCFG?");
/* Enabled the LTE radio */
#if !defined(CONFIG_MODEM_HL7800_BOOT_IN_AIRPLANE_MODE)
SEND_AT_CMD_EXPECT_OK("AT+CFUN=1,0");
#endif
/* The modem has been initialized and now the network interface can be
* started in the CEREG message handler.
*/
LOG_INF("Modem ready!");
iface_ctx.restarting = false;
iface_ctx.configured = true;
allow_sleep(sleep);
/* trigger APN update event */
event_handler(HL7800_EVENT_APN_UPDATE, &iface_ctx.mdm_apn);
#ifdef CONFIG_MODEM_HL7800_BOOT_DELAY
if (!iface_ctx.initialized) {
if (iface_ctx.iface != NULL) {
hl7800_build_mac(&iface_ctx);
net_if_set_link_addr(iface_ctx.iface, iface_ctx.mac_addr,
sizeof(iface_ctx.mac_addr),
NET_LINK_ETHERNET);
iface_ctx.initialized = true;
}
}
#endif
return 0;
error:
LOG_ERR("Unable to configure modem");
iface_ctx.configured = false;
set_network_state(HL7800_UNABLE_TO_CONFIGURE);
/* Kernel will fault with non-zero return value.
* Allow other parts of application to run when modem cannot be configured.
*/
return 0;
}
static int write_apn(char *access_point_name)
{
char cmd_string[MDM_HL7800_APN_CMD_MAX_SIZE];
/* PDP Context */
memset(cmd_string, 0, MDM_HL7800_APN_CMD_MAX_SIZE);
if (strcmp(MODEM_HL7800_ADDRESS_FAMILY, ADDRESS_FAMILY_IPV4)) {
strncat(cmd_string, "AT+CGDCONT=1,\"" MODEM_HL7800_ADDRESS_FAMILY "\",\"",
MDM_HL7800_APN_CMD_MAX_STRLEN);
} else {
strncat(cmd_string, "AT+CGDCONT=1,\"" ADDRESS_FAMILY_IP "\",\"",
MDM_HL7800_APN_CMD_MAX_STRLEN);
}
strncat(cmd_string, access_point_name, MDM_HL7800_APN_CMD_MAX_STRLEN);
strncat(cmd_string, "\"", MDM_HL7800_APN_CMD_MAX_STRLEN);
return send_at_cmd(NULL, cmd_string, MDM_CMD_SEND_TIMEOUT, 0, false);
}
static void mdm_reset_work_callback(struct k_work *item)
{
ARG_UNUSED(item);
mdm_hl7800_reset();
}
int32_t mdm_hl7800_reset(void)
{
int ret;
hl7800_lock();
ret = modem_reset_and_configure();
hl7800_unlock();
return ret;
}
static void mdm_power_off_work_callback(struct k_work *item)
{
ARG_UNUSED(item);
int ret;
#if defined(CONFIG_DNS_RESOLVER)
struct dns_resolve_context *dns_ctx;
LOG_DBG("Shutdown DNS resolver");
dns_ctx = dns_resolve_get_default();
(void)dns_resolve_close(dns_ctx);
#endif
hl7800_lock();
notify_all_tcp_sockets_closed();
ret = send_at_cmd(NULL, "AT+CPOF", MDM_CMD_SEND_TIMEOUT, 1, false);
if (ret) {
LOG_ERR("AT+CPOF ret:%d", ret);
return;
}
prepare_io_for_reset();
iface_ctx.dns_ready = false;
iface_ctx.configured = false;
iface_ctx.off = true;
/* bring the iface down */
if (iface_ctx.iface) {
net_if_carrier_off(iface_ctx.iface);
}
LOG_INF("Modem powered off");
hl7800_unlock();
}
static int hl7800_power_off(void)
{
LOG_INF("Powering off modem");
wakeup_hl7800();
hl7800_stop_rssi_work();
k_work_cancel_delayable(&iface_ctx.iface_status_work);
k_work_cancel_delayable(&iface_ctx.dns_work);
k_work_cancel_delayable(&iface_ctx.mdm_reset_work);
k_work_cancel_delayable(&iface_ctx.allow_sleep_work);
k_work_cancel_delayable(&iface_ctx.delete_untracked_socket_work);
(void)k_work_submit_to_queue(&hl7800_workq, &iface_ctx.mdm_pwr_off_work);
return 0;
}
int32_t mdm_hl7800_power_off(void)
{
int rc;
hl7800_lock();
rc = hl7800_power_off();
hl7800_unlock();
return rc;
}
int mdm_hl7800_register_event_callback(struct mdm_hl7800_callback_agent *agent)
{
int ret;
ret = k_sem_take(&cb_lock, K_NO_WAIT);
if (ret < 0) {
return ret;
}
if (!agent->event_callback) {
LOG_WRN("event_callback is NULL");
}
sys_slist_append(&hl7800_event_callback_list, &agent->node);
k_sem_give(&cb_lock);
return ret;
}
int mdm_hl7800_unregister_event_callback(struct mdm_hl7800_callback_agent *agent)
{
int ret;
ret = k_sem_take(&cb_lock, K_NO_WAIT);
if (ret < 0) {
return ret;
}
ret = (int)sys_slist_find_and_remove(&hl7800_event_callback_list, &agent->node);
if (ret) {
ret = 0;
} else {
ret = -ENOENT;
}
k_sem_give(&cb_lock);
return ret;
}
/*** OFFLOAD FUNCTIONS ***/
static int connect_TCP_socket(struct hl7800_socket *sock)
{
int ret;
char cmd_con[sizeof("AT+KTCPCNX=##")];
snprintk(cmd_con, sizeof(cmd_con), "AT+KTCPCNX=%d", sock->socket_id);
ret = send_at_cmd(sock, cmd_con, MDM_CMD_SEND_TIMEOUT, 0, false);
if (ret < 0) {
LOG_ERR("AT+KTCPCNX ret:%d", ret);
ret = -EIO;
goto done;
}
/* Now wait for +KTCP_IND or +KTCP_NOTIF to ensure
* the connection succeeded or failed.
*/
ret = k_sem_take(&sock->sock_send_sem, MDM_CMD_CONN_TIMEOUT);
if (ret == 0) {
ret = sock->error;
} else if (ret == -EAGAIN) {
ret = -ETIMEDOUT;
}
if (ret < 0) {
LOG_ERR("+KTCP_IND/NOTIF ret:%d", ret);
goto done;
} else {
sock->state = SOCK_CONNECTED;
net_context_set_state(sock->context, NET_CONTEXT_CONNECTED);
}
done:
return ret;
}
static int configure_TCP_socket(struct hl7800_socket *sock)
{
int ret;
char cmd_cfg[sizeof("AT+KTCPCFG=#,#,\"" IPV6_ADDR_FORMAT "\",#####,,,,#,,#")];
int dst_port = -1;
int af;
bool restore_on_boot = false;
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
restore_on_boot = true;
#endif
if (sock->dst.sa_family == AF_INET6) {
af = MDM_HL7800_SOCKET_AF_IPV6;
dst_port = net_sin6(&sock->dst)->sin6_port;
} else if (sock->dst.sa_family == AF_INET) {
af = MDM_HL7800_SOCKET_AF_IPV4;
dst_port = net_sin(&sock->dst)->sin_port;
} else {
return -EINVAL;
}
sock->socket_id = MDM_CREATE_SOCKET_ID;
snprintk(cmd_cfg, sizeof(cmd_cfg), "AT+KTCPCFG=%d,%d,\"%s\",%u,,,,%d,,%d", 1, 0,
hl7800_sprint_ip_addr(&sock->dst), dst_port, af, restore_on_boot);
ret = send_at_cmd(sock, cmd_cfg, MDM_CMD_SEND_TIMEOUT, 0, false);
if (ret < 0) {
LOG_ERR("AT+KTCPCFG ret:%d", ret);
ret = -EIO;
goto done;
}
done:
return ret;
}
static int configure_UDP_socket(struct hl7800_socket *sock)
{
int ret = 0;
char cmd[sizeof("AT+KUDPCFG=1,0,,,,,0,#")];
int af;
bool restore_on_boot = false;
#ifdef CONFIG_MODEM_HL7800_LOW_POWER_MODE
restore_on_boot = true;
#endif
sock->socket_id = MDM_CREATE_SOCKET_ID;
if (sock->family == AF_INET) {
af = MDM_HL7800_SOCKET_AF_IPV4;
} else if (sock->family == AF_INET6) {
af = MDM_HL7800_SOCKET_AF_IPV6;
} else {
return -EINVAL;
}
snprintk(cmd, sizeof(cmd), "AT+KUDPCFG=1,0,,,,,%d,%d", af, restore_on_boot);
ret = send_at_cmd(sock, cmd, MDM_CMD_SEND_TIMEOUT, 0, false);
if (ret < 0) {
LOG_ERR("AT+KUDPCFG ret:%d", ret);
goto done;
}
/* Now wait for +KUDP_IND or +KUDP_NOTIF to ensure
* the socket was created.
*/
ret = k_sem_take(&sock->sock_send_sem, MDM_CMD_CONN_TIMEOUT);
if (ret == 0) {
ret = sock->error;
} else if (ret == -EAGAIN) {
ret = -ETIMEDOUT;
}
if (ret < 0) {
LOG_ERR("+KUDP_IND/NOTIF ret:%d", ret);
goto done;
}
done:
return ret;
}
static int reconfigure_IP_connection(void)
{
int ret = 0;
if (iface_ctx.reconfig_IP_connection) {
iface_ctx.reconfig_IP_connection = false;
/* reconfigure GPRS connection so sockets can be used */
ret = setup_gprs_connection(iface_ctx.mdm_apn.value);
if (ret < 0) {
LOG_ERR("AT+KCNXCFG= ret:%d", ret);
goto done;
}
/* query all TCP socket configs */
ret = send_at_cmd(NULL, "AT+KTCPCFG?", MDM_CMD_SEND_TIMEOUT, 0,
false);
/* query all UDP socket configs */
ret = send_at_cmd(NULL, "AT+KUDPCFG?", MDM_CMD_SEND_TIMEOUT, 0,
false);
}
done:
return ret;
}
static int offload_get(sa_family_t family, enum net_sock_type type,
enum net_ip_protocol ip_proto,
struct net_context **context)
{
int ret = 0;
struct hl7800_socket *sock = NULL;
hl7800_lock();
/* new socket */
sock = socket_get();
if (!sock) {
ret = -ENOMEM;
goto done;
}
(*context)->offload_context = sock;
/* set the context iface index to our iface */
(*context)->iface = net_if_get_by_iface(iface_ctx.iface);
sock->family = family;
sock->type = type;
sock->ip_proto = ip_proto;
sock->context = *context;
sock->reconfig = false;
sock->created = false;
sock->socket_id = MDM_CREATE_SOCKET_ID;
/* If UDP, create UDP socket now.
* TCP socket needs to be created later once the
* connection IP address is known.
*/
if (type == SOCK_DGRAM) {
wakeup_hl7800();
/* reconfig IP connection if necessary */
if (reconfigure_IP_connection() < 0) {
socket_put(sock);
goto done;
}
ret = configure_UDP_socket(sock);
if (ret < 0) {
socket_put(sock);
goto done;
}
}
done:
allow_sleep(true);
hl7800_unlock();
return ret;
}
static int offload_bind(struct net_context *context,
const struct sockaddr *addr, socklen_t addr_len)
{
struct hl7800_socket *sock = NULL;
if (!context) {
return -EINVAL;
}
sock = (struct hl7800_socket *)context->offload_context;
if (!sock) {
LOG_ERR("Can't locate socket for net_ctx:%p!", context);
return -EINVAL;
}
/* save bind address information */
sock->src.sa_family = addr->sa_family;
#if defined(CONFIG_NET_IPV6)
if (addr->sa_family == AF_INET6) {
net_ipaddr_copy(&net_sin6(&sock->src)->sin6_addr,
&net_sin6(addr)->sin6_addr);
net_sin6(&sock->src)->sin6_port = net_sin6(addr)->sin6_port;
} else
#endif
#if defined(CONFIG_NET_IPV4)
if (addr->sa_family == AF_INET) {
net_ipaddr_copy(&net_sin(&sock->src)->sin_addr,
&net_sin(addr)->sin_addr);
net_sin(&sock->src)->sin_port = net_sin(addr)->sin_port;
} else
#endif
{
return -EPFNOSUPPORT;
}
return 0;
}
static int offload_listen(struct net_context *context, int backlog)
{
/* NOT IMPLEMENTED */
return -ENOTSUP;
}
static int offload_connect(struct net_context *context,
const struct sockaddr *addr, socklen_t addr_len,
net_context_connect_cb_t cb, int32_t timeout,
void *user_data)
{
int ret = 0;
int dst_port = -1;
struct hl7800_socket *sock;
if (!context || !addr) {
return -EINVAL;
}
sock = (struct hl7800_socket *)context->offload_context;
if (!sock) {
LOG_ERR("Can't locate socket for net_ctx:%p!", context);
return -EINVAL;
}
if (sock->socket_id < 1) {
LOG_ERR("Invalid socket_id(%d) for net_ctx:%p!",
sock->socket_id, context);
return -EINVAL;
}
sock->dst.sa_family = addr->sa_family;
#if defined(CONFIG_NET_IPV6)
if (addr->sa_family == AF_INET6) {
net_ipaddr_copy(&net_sin6(&sock->dst)->sin6_addr,
&net_sin6(addr)->sin6_addr);
dst_port = ntohs(net_sin6(addr)->sin6_port);
net_sin6(&sock->dst)->sin6_port = dst_port;
} else
#endif
#if defined(CONFIG_NET_IPV4)
if (addr->sa_family == AF_INET) {
net_ipaddr_copy(&net_sin(&sock->dst)->sin_addr,
&net_sin(addr)->sin_addr);
dst_port = ntohs(net_sin(addr)->sin_port);
net_sin(&sock->dst)->sin_port = dst_port;
} else
#endif
{
return -EINVAL;
}
if (dst_port < 0) {
LOG_ERR("Invalid port: %d", dst_port);
return -EINVAL;
}
hl7800_lock();
if (sock->type == SOCK_STREAM) {
wakeup_hl7800();
reconfigure_IP_connection();
/* Configure/create TCP connection */
if (!sock->created) {
ret = configure_TCP_socket(sock);
if (ret < 0) {
goto done;
}
}
/* Connect to TCP */
ret = connect_TCP_socket(sock);
if (ret < 0) {
goto done;
}
}
done:
allow_sleep(true);
hl7800_unlock();
if (cb) {
cb(context, ret, user_data);
}
return ret;
}
static int offload_accept(struct net_context *context, net_tcp_accept_cb_t cb,
int32_t timeout, void *user_data)
{
/* NOT IMPLEMENTED */
return -ENOTSUP;
}
static int offload_sendto(struct net_pkt *pkt, const struct sockaddr *dst_addr,
socklen_t addr_len, net_context_send_cb_t cb,
int32_t timeout, void *user_data)
{
struct net_context *context = net_pkt_context(pkt);
struct hl7800_socket *sock;
int ret, dst_port = 0;
if (!context) {
return -EINVAL;
}
sock = (struct hl7800_socket *)context->offload_context;
if (!sock) {
LOG_ERR("Can't locate socket for net_ctx:%p!", context);
return -EINVAL;
}
#if defined(CONFIG_NET_IPV6)
if (dst_addr->sa_family == AF_INET6) {
net_ipaddr_copy(&net_sin6(&sock->dst)->sin6_addr,
&net_sin6(dst_addr)->sin6_addr);
dst_port = ntohs(net_sin6(dst_addr)->sin6_port);
net_sin6(&sock->dst)->sin6_port = dst_port;
} else
#endif
#if defined(CONFIG_NET_IPV4)
if (dst_addr->sa_family == AF_INET) {
net_ipaddr_copy(&net_sin(&sock->dst)->sin_addr,
&net_sin(dst_addr)->sin_addr);
dst_port = ntohs(net_sin(dst_addr)->sin_port);
net_sin(&sock->dst)->sin_port = dst_port;
} else
#endif
{
return -EINVAL;
}
hl7800_lock();
wakeup_hl7800();
reconfigure_IP_connection();
ret = send_data(sock, pkt);
allow_sleep(true);
hl7800_unlock();
if (ret >= 0) {
net_pkt_unref(pkt);
}
if (cb) {
cb(context, ret, user_data);
}
return ret;
}
static int offload_send(struct net_pkt *pkt, net_context_send_cb_t cb,
int32_t timeout, void *user_data)
{
struct net_context *context = net_pkt_context(pkt);
socklen_t addr_len;
addr_len = 0;
#if defined(CONFIG_NET_IPV6)
if (net_pkt_family(pkt) == AF_INET6) {
addr_len = sizeof(struct sockaddr_in6);
} else
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_NET_IPV4)
if (net_pkt_family(pkt) == AF_INET) {
addr_len = sizeof(struct sockaddr_in);
} else
#endif /* CONFIG_NET_IPV4 */
{
return -EPFNOSUPPORT;
}
return offload_sendto(pkt, &context->remote, addr_len, cb, timeout,
user_data);
}
static int offload_recv(struct net_context *context, net_context_recv_cb_t cb,
int32_t timeout, void *user_data)
{
struct hl7800_socket *sock;
if (!context) {
return -EINVAL;
}
sock = (struct hl7800_socket *)context->offload_context;
if (!sock) {
LOG_ERR("Can't locate socket for net_ctx:%p!", context);
return -EINVAL;
}
sock->recv_cb = cb;
sock->recv_user_data = user_data;
return 0;
}
static int offload_put(struct net_context *context)
{
struct hl7800_socket *sock;
char cmd[sizeof("AT+KTCPCLOSE=##")];
if (!context) {
return -EINVAL;
}
sock = (struct hl7800_socket *)context->offload_context;
if (!sock) {
/* socket was already closed? Exit quietly here. */
return 0;
}
/* cancel notif work if queued */
k_work_cancel_delayable(&sock->notif_work);
hl7800_lock();
/* close connection */
if (sock->type == SOCK_STREAM) {
snprintk(cmd, sizeof(cmd), "AT+KTCPCLOSE=%d",
sock->socket_id);
} else {
snprintk(cmd, sizeof(cmd), "AT+KUDPCLOSE=%d",
sock->socket_id);
}
wakeup_hl7800();
if ((sock->type == SOCK_DGRAM) || (sock->error != -ENOTCONN)) {
send_at_cmd(sock, cmd, MDM_CMD_SEND_TIMEOUT, 0, false);
}
if (sock->type == SOCK_STREAM) {
/* delete session */
delete_socket(sock, sock->type, sock->socket_id);
}
allow_sleep(true);
socket_put(sock);
net_context_unref(context);
if (sock->type == SOCK_STREAM) {
/* TCP contexts are referenced twice,
* once for the app and once for the stack.
* Since TCP stack is not used for offload,
* unref a second time.
*/
net_context_unref(context);
}
hl7800_unlock();
return 0;
}
static struct net_offload offload_funcs = {
.get = offload_get,
.bind = offload_bind,
.listen = offload_listen,
.connect = offload_connect,
.accept = offload_accept,
.send = offload_send,
.sendto = offload_sendto,
.recv = offload_recv,
.put = offload_put,
};
/* Use the last 6 digits of the IMEI as the mac address */
static void hl7800_build_mac(struct hl7800_iface_ctx *ictx)
{
ictx->mac_addr[0] = ictx->mdm_imei[MDM_HL7800_IMEI_STRLEN - 6];
ictx->mac_addr[1] = ictx->mdm_imei[MDM_HL7800_IMEI_STRLEN - 5];
ictx->mac_addr[2] = ictx->mdm_imei[MDM_HL7800_IMEI_STRLEN - 4];
ictx->mac_addr[3] = ictx->mdm_imei[MDM_HL7800_IMEI_STRLEN - 3];
ictx->mac_addr[4] = ictx->mdm_imei[MDM_HL7800_IMEI_STRLEN - 2];
ictx->mac_addr[5] = ictx->mdm_imei[MDM_HL7800_IMEI_STRLEN - 1];
}
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
int32_t mdm_hl7800_update_fw(char *file_path)
{
int ret = 0;
struct fs_dirent file_info;
char cmd1[sizeof("AT+WDSD=24643584")];
/* get file info */
ret = fs_stat(file_path, &file_info);
if (ret >= 0) {
LOG_DBG("file '%s' size %zu", file_info.name, file_info.size);
} else {
LOG_ERR("Failed to get file [%s] info: %d", file_path, ret);
goto err;
}
ret = fs_open(&iface_ctx.fw_update_file, file_path, FS_O_READ);
if (ret < 0) {
LOG_ERR("%s open err: %d", file_path, ret);
goto err;
}
/* turn on device service indications */
ret = send_at_cmd(NULL, "AT+WDSI=2", MDM_CMD_SEND_TIMEOUT, 0, false);
if (ret < 0) {
goto err;
}
notify_all_tcp_sockets_closed();
hl7800_stop_rssi_work();
k_work_cancel_delayable(&iface_ctx.iface_status_work);
k_work_cancel_delayable(&iface_ctx.dns_work);
k_work_cancel_delayable(&iface_ctx.mdm_reset_work);
k_work_cancel_delayable(&iface_ctx.allow_sleep_work);
k_work_cancel_delayable(&iface_ctx.delete_untracked_socket_work);
iface_ctx.dns_ready = false;
if (iface_ctx.iface) {
LOG_DBG("HL7800 iface DOWN");
net_if_carrier_off(iface_ctx.iface);
}
/* HL7800 will stay locked for the duration of the FW update */
hl7800_lock();
/* start firmware update process */
LOG_INF("Initiate FW update, total packets: %zd",
((file_info.size / XMODEM_DATA_SIZE) + 1));
set_fota_state(HL7800_FOTA_START);
(void)snprintk(cmd1, sizeof(cmd1), "AT+WDSD=%zd", file_info.size);
(void)send_at_cmd(NULL, cmd1, K_NO_WAIT, 0, false);
err:
return ret;
}
#endif
static int hl7800_init(const struct device *dev)
{
int i, ret = 0;
struct k_work_queue_config cfg = {
.name = "hl7800_workq",
};
ARG_UNUSED(dev);
LOG_DBG("HL7800 Init");
/* Prevent the network interface from starting until
* the modem has been initialized
* because the modem may not have a valid SIM card.
*/
iface_ctx.iface = net_if_get_default();
if (iface_ctx.iface == NULL) {
return -EIO;
}
net_if_carrier_off(iface_ctx.iface);
/* init sockets */
for (i = 0; i < MDM_MAX_SOCKETS; i++) {
iface_ctx.sockets[i].socket_id = -1;
k_work_init(&iface_ctx.sockets[i].recv_cb_work,
sockreadrecv_cb_work);
k_work_init(&iface_ctx.sockets[i].rx_data_work,
sock_rx_data_cb_work);
k_work_init_delayable(&iface_ctx.sockets[i].notif_work,
sock_notif_cb_work);
k_sem_init(&iface_ctx.sockets[i].sock_send_sem, 0, 1);
}
iface_ctx.last_socket_id = 0;
k_sem_init(&iface_ctx.response_sem, 0, 1);
k_sem_init(&iface_ctx.mdm_awake, 0, 1);
/* initialize the work queue */
k_work_queue_start(&hl7800_workq, hl7800_workq_stack,
K_THREAD_STACK_SIZEOF(hl7800_workq_stack),
WORKQ_PRIORITY, &cfg);
/* init work tasks */
k_work_init_delayable(&iface_ctx.rssi_query_work, hl7800_rssi_query_work);
k_work_init_delayable(&iface_ctx.iface_status_work, iface_status_work_cb);
k_work_init_delayable(&iface_ctx.dns_work, dns_work_cb);
k_work_init(&iface_ctx.mdm_vgpio_work, mdm_vgpio_work_cb);
k_work_init_delayable(&iface_ctx.mdm_reset_work, mdm_reset_work_callback);
k_work_init_delayable(&iface_ctx.allow_sleep_work,
allow_sleep_work_callback);
k_work_init_delayable(&iface_ctx.delete_untracked_socket_work,
delete_untracked_socket_work_cb);
k_work_init(&iface_ctx.mdm_pwr_off_work, mdm_power_off_work_callback);
#ifdef CONFIG_MODEM_HL7800_GPS
k_work_init_delayable(&iface_ctx.gps_work, gps_work_callback);
#endif
#ifdef CONFIG_MODEM_HL7800_FW_UPDATE
k_work_init(&iface_ctx.finish_fw_update_work,
finish_fw_update_work_callback);
iface_ctx.fw_updated = false;
#endif
/* setup port devices and pin directions */
for (i = 0; i < MAX_MDM_CONTROL_PINS; i++) {
if (!gpio_is_ready_dt(&hl7800_cfg.gpio[i])) {
LOG_ERR("gpio port (%s) not ready!",
hl7800_cfg.gpio[i].port->name);
return -ENODEV;
}
}
ret = gpio_pin_configure_dt(&hl7800_cfg.gpio[MDM_RESET], GPIO_OUTPUT);
if (ret) {
LOG_ERR("Error configuring IO MDM_RESET %d err: %d!",
hl7800_cfg.gpio[MDM_RESET].pin, ret);
return ret;
}
ret = gpio_pin_configure_dt(&hl7800_cfg.gpio[MDM_WAKE], GPIO_OUTPUT);
if (ret) {
LOG_ERR("Error configuring IO MDM_WAKE %d err: %d!",
hl7800_cfg.gpio[MDM_WAKE].pin, ret);
return ret;
}
ret = gpio_pin_configure_dt(&hl7800_cfg.gpio[MDM_PWR_ON], GPIO_OUTPUT);
if (ret) {
LOG_ERR("Error configuring IO MDM_PWR_ON %d err: %d!",
hl7800_cfg.gpio[MDM_PWR_ON].pin, ret);
return ret;
}
ret = gpio_pin_configure_dt(&hl7800_cfg.gpio[MDM_FAST_SHUTD], GPIO_OUTPUT);
if (ret) {
LOG_ERR("Error configuring IO MDM_FAST_SHUTD %d err: %d!",
hl7800_cfg.gpio[MDM_FAST_SHUTD].pin, ret);
return ret;
}
ret = gpio_pin_configure_dt(&hl7800_cfg.gpio[MDM_VGPIO], GPIO_INPUT);
if (ret) {
LOG_ERR("Error configuring IO MDM_VGPIO %d err: %d!",
hl7800_cfg.gpio[MDM_VGPIO].pin, ret);
return ret;
}
ret = gpio_pin_configure_dt(&hl7800_cfg.gpio[MDM_UART_DSR], GPIO_INPUT);
if (ret) {
LOG_ERR("Error configuring IO MDM_UART_DSR %d err: %d!",
hl7800_cfg.gpio[MDM_UART_DSR].pin, ret);
return ret;
}
ret = gpio_pin_configure_dt(&hl7800_cfg.gpio[MDM_UART_CTS], GPIO_INPUT);
if (ret) {
LOG_ERR("Error configuring IO MDM_UART_CTS %d err: %d!",
hl7800_cfg.gpio[MDM_UART_CTS].pin, ret);
return ret;
}
ret = gpio_pin_configure_dt(&hl7800_cfg.gpio[MDM_GPIO6], GPIO_INPUT);
if (ret) {
LOG_ERR("Error configuring IO MDM_GPIO6 %d err: %d!",
hl7800_cfg.gpio[MDM_GPIO6].pin, ret);
return ret;
}
/* when this driver starts, the UART peripheral is already enabled */
iface_ctx.uart_on = true;
modem_assert_wake(false);
modem_assert_pwr_on(false);
modem_assert_fast_shutd(false);
/* Allow modem to run so we are in a known state.
* This allows HL7800 VGPIO to be high, which is good because the UART
* IO are already configured.
*/
modem_run();
/* setup input pin callbacks */
/* VGPIO */
gpio_init_callback(&iface_ctx.mdm_vgpio_cb, mdm_vgpio_callback_isr,
BIT(hl7800_cfg.gpio[MDM_VGPIO].pin));
ret = gpio_add_callback(hl7800_cfg.gpio[MDM_VGPIO].port,
&iface_ctx.mdm_vgpio_cb);
if (ret) {
LOG_ERR("Cannot setup vgpio callback! (%d)", ret);
return ret;
}
ret = gpio_pin_interrupt_configure_dt(&hl7800_cfg.gpio[MDM_VGPIO], GPIO_INT_EDGE_BOTH);
if (ret) {
LOG_ERR("Error config vgpio interrupt! (%d)", ret);
return ret;
}
/* UART DSR */
gpio_init_callback(&iface_ctx.mdm_uart_dsr_cb, mdm_uart_dsr_callback_isr,
BIT(hl7800_cfg.gpio[MDM_UART_DSR].pin));
ret = gpio_add_callback(hl7800_cfg.gpio[MDM_UART_DSR].port,
&iface_ctx.mdm_uart_dsr_cb);
if (ret) {
LOG_ERR("Cannot setup uart dsr callback! (%d)", ret);
return ret;
}
ret = gpio_pin_interrupt_configure_dt(&hl7800_cfg.gpio[MDM_UART_DSR], GPIO_INT_EDGE_BOTH);
if (ret) {
LOG_ERR("Error config uart dsr interrupt! (%d)", ret);
return ret;
}
/* GPIO6 */
gpio_init_callback(&iface_ctx.mdm_gpio6_cb, mdm_gpio6_callback_isr,
BIT(hl7800_cfg.gpio[MDM_GPIO6].pin));
ret = gpio_add_callback(hl7800_cfg.gpio[MDM_GPIO6].port,
&iface_ctx.mdm_gpio6_cb);
if (ret) {
LOG_ERR("Cannot setup gpio6 callback! (%d)", ret);
return ret;
}
ret = gpio_pin_interrupt_configure_dt(&hl7800_cfg.gpio[MDM_GPIO6], GPIO_INT_EDGE_BOTH);
if (ret) {
LOG_ERR("Error config gpio6 interrupt! (%d)", ret);
return ret;
}
/* UART CTS */
gpio_init_callback(&iface_ctx.mdm_uart_cts_cb, mdm_uart_cts_callback,
BIT(hl7800_cfg.gpio[MDM_UART_CTS].pin));
ret = gpio_add_callback(hl7800_cfg.gpio[MDM_UART_CTS].port,
&iface_ctx.mdm_uart_cts_cb);
if (ret) {
LOG_ERR("Cannot setup uart cts callback! (%d)", ret);
return ret;
}
ret = gpio_pin_interrupt_configure_dt(&hl7800_cfg.gpio[MDM_UART_CTS], GPIO_INT_EDGE_BOTH);
if (ret) {
LOG_ERR("Error config uart cts interrupt! (%d)", ret);
return ret;
}
/* Set modem data storage */
iface_ctx.mdm_ctx.data_manufacturer = iface_ctx.mdm_manufacturer;
iface_ctx.mdm_ctx.data_model = iface_ctx.mdm_model;
iface_ctx.mdm_ctx.data_revision = iface_ctx.mdm_revision;
#ifdef CONFIG_MODEM_SIM_NUMBERS
iface_ctx.mdm_ctx.data_imei = iface_ctx.mdm_imei;
#endif
iface_ctx.mdm_ctx.data_rssi = &iface_ctx.mdm_rssi;
ret = mdm_receiver_register(&iface_ctx.mdm_ctx, MDM_UART_DEV,
mdm_recv_buf, sizeof(mdm_recv_buf));
if (ret < 0) {
LOG_ERR("Error registering modem receiver (%d)!", ret);
return ret;
}
k_queue_init(&iface_ctx.stale_socket_queue);
/* start RX thread */
k_thread_name_set(
k_thread_create(&hl7800_rx_thread, hl7800_rx_stack,
K_THREAD_STACK_SIZEOF(hl7800_rx_stack),
hl7800_rx, NULL, NULL, NULL,
RX_THREAD_PRIORITY, 0, K_NO_WAIT),
"hl7800 rx");
#ifdef CONFIG_MODEM_HL7800_BOOT_DELAY
modem_reset();
#else
ret = modem_reset_and_configure();
#endif
return ret;
}
static void offload_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct hl7800_iface_ctx *ctx = dev->data;
iface->if_dev->offload = &offload_funcs;
ctx->iface = iface;
if (!IS_ENABLED(CONFIG_MODEM_HL7800_BOOT_DELAY)) {
hl7800_build_mac(&iface_ctx);
net_if_set_link_addr(iface, iface_ctx.mac_addr, sizeof(iface_ctx.mac_addr),
NET_LINK_ETHERNET);
iface_ctx.initialized = true;
}
}
static struct offloaded_if_api api_funcs = {
.iface_api.init = offload_iface_init,
};
NET_DEVICE_DT_INST_OFFLOAD_DEFINE(0, hl7800_init, NULL, &iface_ctx,
&hl7800_cfg, CONFIG_MODEM_HL7800_INIT_PRIORITY,
&api_funcs, MDM_MTU);