zephyr/drivers/clock_control/clock_control_litex.h
Michal Sieron 72a2ec253e clock_control: litex: Use register names
Use `DT_REG_ADDR_BY_NAME` and `DT_REG_SIZE_BY_NAME` to access register
properties from dts.

Signed-off-by: Michal Sieron <msieron@internships.antmicro.com>
2022-05-06 11:31:54 +02:00

266 lines
7.3 KiB
C

/*
* Copyright (c) 2020 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef LITEX_MMCM_H
#define LITEX_MMCM_H
#include <zephyr/types.h>
/* Common values */
#define PICOS_IN_SEC 1000000000000
#define BITS_PER_BYTE 8
/* MMCM specific numbers */
#define CLKOUT_MAX 7
#define DELAY_TIME_MAX 63
#define PHASE_MUX_MAX 7
#define HIGH_LOW_TIME_REG_MAX 63
#define PHASE_MUX_RES_FACTOR 8
/* DRP registers index */
#define DRP_RESET 0
#define DRP_LOCKED 1
#define DRP_READ 2
#define DRP_WRITE 3
#define DRP_DRDY 4
#define DRP_ADR 5
#define DRP_DAT_W 6
#define DRP_DAT_R 7
/* Base address */
#define DRP_BASE DT_REG_ADDR_BY_IDX(MMCM, 0)
/* Register address */
#define DRP_ADDR_RESET DT_REG_ADDR_BY_NAME(MMCM, drp_reset)
#define DRP_ADDR_LOCKED DT_REG_ADDR_BY_NAME(MMCM, drp_locked)
#define DRP_ADDR_READ DT_REG_ADDR_BY_NAME(MMCM, drp_read)
#define DRP_ADDR_WRITE DT_REG_ADDR_BY_NAME(MMCM, drp_write)
#define DRP_ADDR_DRDY DT_REG_ADDR_BY_NAME(MMCM, drp_drdy)
#define DRP_ADDR_ADR DT_REG_ADDR_BY_NAME(MMCM, drp_adr)
#define DRP_ADDR_DAT_W DT_REG_ADDR_BY_NAME(MMCM, drp_dat_w)
#define DRP_ADDR_DAT_R DT_REG_ADDR_BY_NAME(MMCM, drp_dat_r)
/* Devicetree global defines */
#define LOCK_TIMEOUT DT_PROP(MMCM, litex_lock_timeout)
#define DRDY_TIMEOUT DT_PROP(MMCM, litex_drdy_timeout)
#define SYS_CLOCK_FREQUENCY DT_PROP(MMCM, litex_sys_clock_frequency)
#define DIVCLK_DIVIDE_MIN DT_PROP(MMCM, litex_divclk_divide_min)
#define DIVCLK_DIVIDE_MAX DT_PROP(MMCM, litex_divclk_divide_max)
#define CLKFBOUT_MULT_MIN DT_PROP(MMCM, litex_clkfbout_mult_min)
#define CLKFBOUT_MULT_MAX DT_PROP(MMCM, litex_clkfbout_mult_max)
#define VCO_FREQ_MIN DT_PROP(MMCM, litex_vco_freq_min)
#define VCO_FREQ_MAX DT_PROP(MMCM, litex_vco_freq_max)
#define CLKOUT_DIVIDE_MIN DT_PROP(MMCM, litex_clkout_divide_min)
#define CLKOUT_DIVIDE_MAX DT_PROP(MMCM, litex_clkout_divide_max)
#define VCO_MARGIN DT_PROP(MMCM, litex_vco_margin)
#define CLKOUT_INIT(N) \
BUILD_ASSERT(CLKOUT_DUTY_DEN(N) > 0 && \
CLKOUT_DUTY_NUM(N) > 0 && \
CLKOUT_DUTY_NUM(N) <= CLKOUT_DUTY_DEN(N), \
"Invalid default duty"); \
BUILD_ASSERT(CLKOUT_ID(N) < NCLKOUT, "Invalid CLKOUT index"); \
lcko = &ldev->clkouts[N]; \
lcko->id = CLKOUT_ID(N); \
\
lcko->clkout_div = clkout_div; \
lcko->def.freq = CLKOUT_FREQ(N); \
lcko->def.phase = CLKOUT_PHASE(N); \
lcko->def.duty.num = CLKOUT_DUTY_NUM(N); \
lcko->def.duty.den = CLKOUT_DUTY_DEN(N); \
lcko->margin.m = CLKOUT_MARGIN(N); \
lcko->margin.exp = CLKOUT_MARGIN_EXP(N);
/* Devicetree clkout defines */
#define CLKOUT_EXIST(N) DT_NODE_HAS_STATUS(DT_NODELABEL(clk##N), okay)
#define CLKOUT_ID(N) DT_REG_ADDR(DT_NODELABEL(clk##N))
#define CLKOUT_FREQ(N) DT_PROP(DT_NODELABEL(clk##N), \
litex_clock_frequency)
#define CLKOUT_PHASE(N) DT_PROP(DT_NODELABEL(clk##N), \
litex_clock_phase)
#define CLKOUT_DUTY_NUM(N) DT_PROP(DT_NODELABEL(clk##N), \
litex_clock_duty_num)
#define CLKOUT_DUTY_DEN(N) DT_PROP(DT_NODELABEL(clk##N), \
litex_clock_duty_den)
#define CLKOUT_MARGIN(N) DT_PROP(DT_NODELABEL(clk##N), \
litex_clock_margin)
#define CLKOUT_MARGIN_EXP(N) DT_PROP(DT_NODELABEL(clk##N), \
litex_clock_margin_exp)
/* Register values */
#define FULL_REG_16 0xFFFF
#define ZERO_REG 0x0
#define KEEP_IN_MUL_REG1 0xF000
#define KEEP_IN_MUL_REG2 0xFF3F
#define KEEP_IN_DIV 0xC000
#define REG1_FREQ_MASK 0xF000
#define REG2_FREQ_MASK 0x803F
#define REG1_DUTY_MASK 0xF000
#define REG2_DUTY_MASK 0xFF7F
#define REG1_PHASE_MASK 0x1FFF
#define REG2_PHASE_MASK 0xFCC0
#define FILT1_MASK 0x66FF
#define FILT2_MASK 0x666F
#define LOCK1_MASK 0xFC00
#define LOCK23_MASK 0x8000
/* Control bits extraction masks */
#define HL_TIME_MASK 0x3F
#define FRAC_MASK 0x7
#define EDGE_MASK 0x1
#define NO_CNT_MASK 0x1
#define FRAC_EN_MASK 0x1
#define PHASE_MUX_MASK 0x7
/* Bit groups start position in DRP registers */
#define HIGH_TIME_POS 6
#define LOW_TIME_POS 0
#define PHASE_MUX_POS 13
#define FRAC_POS 12
#define FRAC_EN_POS 11
#define FRAC_WF_R_POS 10
#define EDGE_POS 7
#define NO_CNT_POS 6
#define EDGE_DIVREG_POS 13
#define NO_CNT_DIVREG_POS 12
#define DELAY_TIME_POS 0
/* MMCM Register addresses */
#define POWER_REG 0x28
#define DIV_REG 0x16
#define LOCK_REG1 0x18
#define LOCK_REG2 0x19
#define LOCK_REG3 0x1A
#define FILT_REG1 0x4E
#define FILT_REG2 0x4F
#define CLKOUT0_REG1 0x08
#define CLKOUT0_REG2 0x09
#define CLKOUT1_REG1 0x0A
#define CLKOUT1_REG2 0x0B
#define CLKOUT2_REG1 0x0C
#define CLKOUT2_REG2 0x0D
#define CLKOUT3_REG1 0x0E
#define CLKOUT3_REG2 0x0F
#define CLKOUT4_REG1 0x10
#define CLKOUT4_REG2 0x11
#define CLKOUT5_REG1 0x06
#define CLKOUT5_REG2 0x07
#define CLKOUT6_REG1 0x12
#define CLKOUT6_REG2 0x13
#define CLKFBOUT_REG1 0x14
#define CLKFBOUT_REG2 0x15
/* Basic structure for DRP registers */
struct litex_drp_reg {
uint32_t addr;
uint32_t size;
};
struct litex_clk_range {
uint32_t min;
uint32_t max;
};
struct clk_duty {
uint32_t num;
uint32_t den;
};
struct litex_clk_default {
struct clk_duty duty;
int phase;
uint32_t freq;
};
struct litex_clk_glob_params {
uint64_t freq;
uint32_t div;
uint32_t mul;
};
/* Divider configuration bits group */
struct litex_clk_div_params {
uint8_t high_time;
uint8_t low_time;
uint8_t no_cnt;
uint8_t edge;
};
/* Phase configuration bits group */
struct litex_clk_phase_params {
uint8_t phase_mux;
uint8_t delay_time;
uint8_t mx;
};
/* Fractional configuration bits group */
struct litex_clk_frac_params {
uint8_t frac_en;
uint8_t frac;
uint8_t phase_mux_f;
uint8_t frac_wf_r;
uint8_t frac_wf_f;
};
struct litex_clk_params {
struct clk_duty duty;
int phase;
uint32_t freq;
uint32_t period_off;
uint8_t div;
};
struct litex_clk_timeout {
uint32_t lock;
uint32_t drdy;
};
/* Basic structure for MMCM reg addresses */
struct litex_clk_clkout_addr {
uint8_t reg1;
uint8_t reg2;
};
/* Structure for all MMCM regs */
struct litex_clk_regs_addr {
struct litex_clk_clkout_addr clkout[CLKOUT_MAX];
};
struct litex_clk_clkout_margin {
uint32_t m; /* margin factor scaled to integer */
uint32_t exp;
};
struct litex_clk_device {
uint32_t *base;
/*struct clk_hw clk_hw;*/
struct litex_clk_clkout *clkouts; /* array of clock outputs */
struct litex_clk_timeout timeout; /* timeouts for wait functions*/
struct litex_clk_glob_params g_config; /* general MMCM settings */
struct litex_clk_glob_params ts_g_config;/* settings to set*/
struct litex_clk_range divclk; /* divclk_divide_range */
struct litex_clk_range clkfbout; /* clkfbout_mult_frange */
struct litex_clk_range vco; /* vco_freq_range */
uint8_t *update_clkout; /* which clkout needs update */
uint32_t sys_clk_freq; /* input frequency */
uint32_t vco_margin;
uint32_t nclkout;
};
struct litex_clk_clkout {
uint32_t *base;
struct litex_clk_device *ldev; /* global data */
struct litex_clk_default def; /* DTS defaults */
struct litex_clk_params config; /* real CLKOUT settings */
struct litex_clk_params ts_config; /* CLKOUT settings to set */
struct litex_clk_div_params div; /* CLKOUT configuration groups*/
struct litex_clk_phase_params phase;
struct litex_clk_frac_params frac;
struct litex_clk_range clkout_div; /* clkout_divide_range */
struct litex_clk_clkout_margin margin;
uint32_t id;
};
#endif /* LITEX_MMCM_H */