55fa9b6149
Implementation of PM in the driver requires PM to be enabled. This was enabled in the SoC until now and was recently removed. Fixes #64608 Signed-off-by: Anas Nashif <anas.nashif@intel.com>
1110 lines
31 KiB
C
1110 lines
31 KiB
C
/*
|
|
* Copyright (c) 2010, 2012-2015 Wind River Systems, Inc.
|
|
* Copyright (c) 2020 Intel Corp.
|
|
* Copyright (c) 2021 Microchip Technology Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @brief Microchip XEC UART Serial Driver
|
|
*
|
|
* This is the driver for the Microchip XEC MCU UART. It is NS16550 compatible.
|
|
*
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT microchip_xec_uart
|
|
|
|
#include <errno.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/arch/cpu.h>
|
|
#include <zephyr/types.h>
|
|
#include <soc.h>
|
|
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/toolchain.h>
|
|
#include <zephyr/linker/sections.h>
|
|
#ifdef CONFIG_SOC_SERIES_MEC172X
|
|
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
|
|
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
|
|
#endif
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
#include <zephyr/drivers/uart.h>
|
|
#include <zephyr/drivers/gpio.h>
|
|
#include <zephyr/sys/sys_io.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <zephyr/irq.h>
|
|
#include <zephyr/pm/device.h>
|
|
#include <zephyr/pm/policy.h>
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(uart_xec, CONFIG_UART_LOG_LEVEL);
|
|
|
|
/* Clock source is 1.8432 MHz derived from PLL 48 MHz */
|
|
#define XEC_UART_CLK_SRC_1P8M 0
|
|
/* Clock source is PLL 48 MHz output */
|
|
#define XEC_UART_CLK_SRC_48M 1
|
|
/* Clock source is the UART_CLK alternate pin function. */
|
|
#define XEC_UART_CLK_SRC_EXT_PIN 2
|
|
|
|
/* register definitions */
|
|
|
|
#define REG_THR 0x00 /* Transmitter holding reg. */
|
|
#define REG_RDR 0x00 /* Receiver data reg. */
|
|
#define REG_BRDL 0x00 /* Baud rate divisor (LSB) */
|
|
#define REG_BRDH 0x01 /* Baud rate divisor (MSB) */
|
|
#define REG_IER 0x01 /* Interrupt enable reg. */
|
|
#define REG_IIR 0x02 /* Interrupt ID reg. */
|
|
#define REG_FCR 0x02 /* FIFO control reg. */
|
|
#define REG_LCR 0x03 /* Line control reg. */
|
|
#define REG_MDC 0x04 /* Modem control reg. */
|
|
#define REG_LSR 0x05 /* Line status reg. */
|
|
#define REG_MSR 0x06 /* Modem status reg. */
|
|
#define REG_SCR 0x07 /* scratch register */
|
|
#define REG_LD_ACTV 0x330 /* Logical Device activate */
|
|
#define REG_LD_CFG 0x3f0 /* Logical Device configuration */
|
|
|
|
/* equates for interrupt enable register */
|
|
|
|
#define IER_RXRDY 0x01 /* receiver data ready */
|
|
#define IER_TBE 0x02 /* transmit bit enable */
|
|
#define IER_LSR 0x04 /* line status interrupts */
|
|
#define IER_MSI 0x08 /* modem status interrupts */
|
|
|
|
/* equates for interrupt identification register */
|
|
|
|
#define IIR_MSTAT 0x00 /* modem status interrupt */
|
|
#define IIR_NIP 0x01 /* no interrupt pending */
|
|
#define IIR_THRE 0x02 /* transmit holding register empty interrupt */
|
|
#define IIR_RBRF 0x04 /* receiver buffer register full interrupt */
|
|
#define IIR_LS 0x06 /* receiver line status interrupt */
|
|
#define IIR_MASK 0x07 /* interrupt id bits mask */
|
|
#define IIR_ID 0x06 /* interrupt ID mask without NIP */
|
|
|
|
/* equates for FIFO control register */
|
|
|
|
#define FCR_FIFO 0x01 /* enable XMIT and RCVR FIFO */
|
|
#define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */
|
|
#define FCR_XMITCLR 0x04 /* clear XMIT FIFO */
|
|
|
|
/*
|
|
* Per PC16550D (Literature Number: SNLS378B):
|
|
*
|
|
* RXRDY, Mode 0: When in the 16450 Mode (FCR0 = 0) or in
|
|
* the FIFO Mode (FCR0 = 1, FCR3 = 0) and there is at least 1
|
|
* character in the RCVR FIFO or RCVR holding register, the
|
|
* RXRDY pin (29) will be low active. Once it is activated the
|
|
* RXRDY pin will go inactive when there are no more charac-
|
|
* ters in the FIFO or holding register.
|
|
*
|
|
* RXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when the
|
|
* FCR3 = 1 and the trigger level or the timeout has been
|
|
* reached, the RXRDY pin will go low active. Once it is acti-
|
|
* vated it will go inactive when there are no more characters
|
|
* in the FIFO or holding register.
|
|
*
|
|
* TXRDY, Mode 0: In the 16450 Mode (FCR0 = 0) or in the
|
|
* FIFO Mode (FCR0 = 1, FCR3 = 0) and there are no charac-
|
|
* ters in the XMIT FIFO or XMIT holding register, the TXRDY
|
|
* pin (24) will be low active. Once it is activated the TXRDY
|
|
* pin will go inactive after the first character is loaded into the
|
|
* XMIT FIFO or holding register.
|
|
*
|
|
* TXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when
|
|
* FCR3 = 1 and there are no characters in the XMIT FIFO, the
|
|
* TXRDY pin will go low active. This pin will become inactive
|
|
* when the XMIT FIFO is completely full.
|
|
*/
|
|
#define FCR_MODE0 0x00 /* set receiver in mode 0 */
|
|
#define FCR_MODE1 0x08 /* set receiver in mode 1 */
|
|
|
|
/* RCVR FIFO interrupt levels: trigger interrupt with this bytes in FIFO */
|
|
#define FCR_FIFO_1 0x00 /* 1 byte in RCVR FIFO */
|
|
#define FCR_FIFO_4 0x40 /* 4 bytes in RCVR FIFO */
|
|
#define FCR_FIFO_8 0x80 /* 8 bytes in RCVR FIFO */
|
|
#define FCR_FIFO_14 0xC0 /* 14 bytes in RCVR FIFO */
|
|
|
|
/* constants for line control register */
|
|
|
|
#define LCR_CS5 0x00 /* 5 bits data size */
|
|
#define LCR_CS6 0x01 /* 6 bits data size */
|
|
#define LCR_CS7 0x02 /* 7 bits data size */
|
|
#define LCR_CS8 0x03 /* 8 bits data size */
|
|
#define LCR_2_STB 0x04 /* 2 stop bits */
|
|
#define LCR_1_STB 0x00 /* 1 stop bit */
|
|
#define LCR_PEN 0x08 /* parity enable */
|
|
#define LCR_PDIS 0x00 /* parity disable */
|
|
#define LCR_EPS 0x10 /* even parity select */
|
|
#define LCR_SP 0x20 /* stick parity select */
|
|
#define LCR_SBRK 0x40 /* break control bit */
|
|
#define LCR_DLAB 0x80 /* divisor latch access enable */
|
|
|
|
/* constants for the modem control register */
|
|
|
|
#define MCR_DTR 0x01 /* dtr output */
|
|
#define MCR_RTS 0x02 /* rts output */
|
|
#define MCR_OUT1 0x04 /* output #1 */
|
|
#define MCR_OUT2 0x08 /* output #2 */
|
|
#define MCR_LOOP 0x10 /* loop back */
|
|
#define MCR_AFCE 0x20 /* auto flow control enable */
|
|
|
|
/* constants for line status register */
|
|
|
|
#define LSR_RXRDY 0x01 /* receiver data available */
|
|
#define LSR_OE 0x02 /* overrun error */
|
|
#define LSR_PE 0x04 /* parity error */
|
|
#define LSR_FE 0x08 /* framing error */
|
|
#define LSR_BI 0x10 /* break interrupt */
|
|
#define LSR_EOB_MASK 0x1E /* Error or Break mask */
|
|
#define LSR_THRE 0x20 /* transmit holding register empty */
|
|
#define LSR_TEMT 0x40 /* transmitter empty */
|
|
|
|
/* constants for modem status register */
|
|
|
|
#define MSR_DCTS 0x01 /* cts change */
|
|
#define MSR_DDSR 0x02 /* dsr change */
|
|
#define MSR_DRI 0x04 /* ring change */
|
|
#define MSR_DDCD 0x08 /* data carrier change */
|
|
#define MSR_CTS 0x10 /* complement of cts */
|
|
#define MSR_DSR 0x20 /* complement of dsr */
|
|
#define MSR_RI 0x40 /* complement of ring signal */
|
|
#define MSR_DCD 0x80 /* complement of dcd */
|
|
|
|
#define IIRC(dev) (((struct uart_xec_dev_data *)(dev)->data)->iir_cache)
|
|
|
|
enum uart_xec_pm_policy_state_flag {
|
|
UART_XEC_PM_POLICY_STATE_TX_FLAG,
|
|
UART_XEC_PM_POLICY_STATE_RX_FLAG,
|
|
UART_XEC_PM_POLICY_STATE_FLAG_COUNT,
|
|
};
|
|
|
|
/* device config */
|
|
struct uart_xec_device_config {
|
|
struct uart_regs *regs;
|
|
uint32_t sys_clk_freq;
|
|
uint8_t girq_id;
|
|
uint8_t girq_pos;
|
|
uint8_t pcr_idx;
|
|
uint8_t pcr_bitpos;
|
|
const struct pinctrl_dev_config *pcfg;
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
|
|
uart_irq_config_func_t irq_config_func;
|
|
#endif
|
|
#ifdef CONFIG_PM_DEVICE
|
|
struct gpio_dt_spec wakerx_gpio;
|
|
bool wakeup_source;
|
|
#endif
|
|
};
|
|
|
|
/** Device data structure */
|
|
struct uart_xec_dev_data {
|
|
struct uart_config uart_config;
|
|
struct k_spinlock lock;
|
|
|
|
uint8_t fcr_cache; /**< cache of FCR write only register */
|
|
uint8_t iir_cache; /**< cache of IIR since it clears when read */
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
uart_irq_callback_user_data_t cb; /**< Callback function pointer */
|
|
void *cb_data; /**< Callback function arg */
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
ATOMIC_DEFINE(pm_policy_state_flag, UART_XEC_PM_POLICY_STATE_FLAG_COUNT);
|
|
#endif
|
|
|
|
#if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED)
|
|
struct k_work_delayable rx_refresh_timeout_work;
|
|
#endif
|
|
|
|
static const struct uart_driver_api uart_xec_driver_api;
|
|
|
|
#if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED)
|
|
static void uart_xec_pm_policy_state_lock_get(enum uart_xec_pm_policy_state_flag flag)
|
|
{
|
|
if (atomic_test_and_set_bit(pm_policy_state_flag, flag) == 0) {
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
|
|
}
|
|
}
|
|
|
|
static void uart_xec_pm_policy_state_lock_put(enum uart_xec_pm_policy_state_flag flag)
|
|
{
|
|
if (atomic_test_and_clear_bit(pm_policy_state_flag, flag) == 1) {
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SOC_SERIES_MEC172X
|
|
|
|
static void uart_clr_slp_en(const struct device *dev)
|
|
{
|
|
struct uart_xec_device_config const *dev_cfg = dev->config;
|
|
|
|
z_mchp_xec_pcr_periph_sleep(dev_cfg->pcr_idx, dev_cfg->pcr_bitpos, 0);
|
|
}
|
|
|
|
static inline void uart_xec_girq_clr(const struct device *dev)
|
|
{
|
|
struct uart_xec_device_config const *dev_cfg = dev->config;
|
|
|
|
mchp_soc_ecia_girq_src_clr(dev_cfg->girq_id, dev_cfg->girq_pos);
|
|
}
|
|
|
|
static inline void uart_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn)
|
|
{
|
|
mchp_xec_ecia_girq_src_en(girq_idx, girq_posn);
|
|
}
|
|
|
|
#else
|
|
|
|
static void uart_clr_slp_en(const struct device *dev)
|
|
{
|
|
struct uart_xec_device_config const *dev_cfg = dev->config;
|
|
|
|
if (dev_cfg->pcr_bitpos == MCHP_PCR2_UART0_POS) {
|
|
mchp_pcr_periph_slp_ctrl(PCR_UART0, 0);
|
|
} else if (dev_cfg->pcr_bitpos == MCHP_PCR2_UART1_POS) {
|
|
mchp_pcr_periph_slp_ctrl(PCR_UART1, 0);
|
|
} else {
|
|
mchp_pcr_periph_slp_ctrl(PCR_UART2, 0);
|
|
}
|
|
}
|
|
|
|
static inline void uart_xec_girq_clr(const struct device *dev)
|
|
{
|
|
struct uart_xec_device_config const *dev_cfg = dev->config;
|
|
|
|
MCHP_GIRQ_SRC(dev_cfg->girq_id) = BIT(dev_cfg->girq_pos);
|
|
}
|
|
|
|
static inline void uart_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn)
|
|
{
|
|
MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void set_baud_rate(const struct device *dev, uint32_t baud_rate)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data * const dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
uint32_t divisor; /* baud rate divisor */
|
|
uint8_t lcr_cache;
|
|
|
|
if ((baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) {
|
|
/*
|
|
* calculate baud rate divisor. a variant of
|
|
* (uint32_t)(dev_cfg->sys_clk_freq / (16.0 * baud_rate) + 0.5)
|
|
*/
|
|
divisor = ((dev_cfg->sys_clk_freq + (baud_rate << 3))
|
|
/ baud_rate) >> 4;
|
|
|
|
/* set the DLAB to access the baud rate divisor registers */
|
|
lcr_cache = regs->LCR;
|
|
regs->LCR = LCR_DLAB | lcr_cache;
|
|
regs->RTXB = (unsigned char)(divisor & 0xff);
|
|
/* bit[7]=0 1.8MHz clock source, =1 48MHz clock source */
|
|
regs->IER = (unsigned char)((divisor >> 8) & 0x7f);
|
|
|
|
/* restore the DLAB to access the baud rate divisor registers */
|
|
regs->LCR = lcr_cache;
|
|
|
|
dev_data->uart_config.baudrate = baud_rate;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure UART.
|
|
* MCHP XEC UART defaults to reset if external Host VCC_PWRGD is inactive.
|
|
* We must change the UART reset signal to XEC VTR_PWRGD. Make sure UART
|
|
* clock source is an internal clock and UART pins are not inverted.
|
|
*/
|
|
static int uart_xec_configure(const struct device *dev,
|
|
const struct uart_config *cfg)
|
|
{
|
|
struct uart_xec_dev_data * const dev_data = dev->data;
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
uint8_t lcr_cache;
|
|
|
|
/* temp for return value if error occurs in this locked region */
|
|
int ret = 0;
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
ARG_UNUSED(dev_data);
|
|
|
|
dev_data->fcr_cache = 0U;
|
|
dev_data->iir_cache = 0U;
|
|
|
|
/* XEC UART specific configuration and enable */
|
|
regs->CFG_SEL &= ~(MCHP_UART_LD_CFG_RESET_VCC |
|
|
MCHP_UART_LD_CFG_EXTCLK | MCHP_UART_LD_CFG_INVERT);
|
|
/* set activate to enable clocks */
|
|
regs->ACTV |= MCHP_UART_LD_ACTIVATE;
|
|
|
|
set_baud_rate(dev, cfg->baudrate);
|
|
|
|
/* Local structure to hold temporary values */
|
|
struct uart_config uart_cfg;
|
|
|
|
switch (cfg->data_bits) {
|
|
case UART_CFG_DATA_BITS_5:
|
|
uart_cfg.data_bits = LCR_CS5;
|
|
break;
|
|
case UART_CFG_DATA_BITS_6:
|
|
uart_cfg.data_bits = LCR_CS6;
|
|
break;
|
|
case UART_CFG_DATA_BITS_7:
|
|
uart_cfg.data_bits = LCR_CS7;
|
|
break;
|
|
case UART_CFG_DATA_BITS_8:
|
|
uart_cfg.data_bits = LCR_CS8;
|
|
break;
|
|
default:
|
|
ret = -ENOTSUP;
|
|
goto out;
|
|
}
|
|
|
|
switch (cfg->stop_bits) {
|
|
case UART_CFG_STOP_BITS_1:
|
|
uart_cfg.stop_bits = LCR_1_STB;
|
|
break;
|
|
case UART_CFG_STOP_BITS_2:
|
|
uart_cfg.stop_bits = LCR_2_STB;
|
|
break;
|
|
default:
|
|
ret = -ENOTSUP;
|
|
goto out;
|
|
}
|
|
|
|
switch (cfg->parity) {
|
|
case UART_CFG_PARITY_NONE:
|
|
uart_cfg.parity = LCR_PDIS;
|
|
break;
|
|
case UART_CFG_PARITY_EVEN:
|
|
uart_cfg.parity = LCR_EPS;
|
|
break;
|
|
default:
|
|
ret = -ENOTSUP;
|
|
goto out;
|
|
}
|
|
|
|
dev_data->uart_config = *cfg;
|
|
|
|
/* data bits, stop bits, parity, clear DLAB */
|
|
regs->LCR = uart_cfg.data_bits | uart_cfg.stop_bits | uart_cfg.parity;
|
|
|
|
regs->MCR = MCR_OUT2 | MCR_RTS | MCR_DTR;
|
|
|
|
/*
|
|
* Program FIFO: enabled, mode 0
|
|
* generate the interrupt at 8th byte
|
|
* Clear TX and RX FIFO
|
|
*/
|
|
dev_data->fcr_cache = FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR |
|
|
FCR_XMITCLR;
|
|
regs->IIR_FCR = dev_data->fcr_cache;
|
|
|
|
/* clear the port */
|
|
lcr_cache = regs->LCR;
|
|
regs->LCR = LCR_DLAB | lcr_cache;
|
|
regs->SCR = regs->RTXB;
|
|
regs->LCR = lcr_cache;
|
|
|
|
/* disable interrupts */
|
|
regs->IER = 0;
|
|
|
|
out:
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
return ret;
|
|
};
|
|
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
static int uart_xec_config_get(const struct device *dev,
|
|
struct uart_config *cfg)
|
|
{
|
|
struct uart_xec_dev_data *data = dev->data;
|
|
|
|
cfg->baudrate = data->uart_config.baudrate;
|
|
cfg->parity = data->uart_config.parity;
|
|
cfg->stop_bits = data->uart_config.stop_bits;
|
|
cfg->data_bits = data->uart_config.data_bits;
|
|
cfg->flow_ctrl = data->uart_config.flow_ctrl;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
|
|
static void uart_xec_wake_handler(const struct device *gpio, struct gpio_callback *cb,
|
|
uint32_t pins)
|
|
{
|
|
/* Disable interrupts on UART RX pin to avoid repeated interrupts. */
|
|
(void)gpio_pin_interrupt_configure(gpio, (find_msb_set(pins) - 1),
|
|
GPIO_INT_DISABLE);
|
|
/* Refresh console expired time */
|
|
#ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED
|
|
k_timeout_t delay = K_MSEC(CONFIG_UART_CONSOLE_INPUT_EXPIRED_TIMEOUT);
|
|
|
|
uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_RX_FLAG);
|
|
k_work_reschedule(&rx_refresh_timeout_work, delay);
|
|
#endif
|
|
}
|
|
|
|
static int uart_xec_pm_action(const struct device *dev,
|
|
enum pm_device_action action)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
int ret = 0;
|
|
|
|
switch (action) {
|
|
case PM_DEVICE_ACTION_RESUME:
|
|
regs->ACTV = MCHP_UART_LD_ACTIVATE;
|
|
break;
|
|
case PM_DEVICE_ACTION_SUSPEND:
|
|
/* Enable UART wake interrupt */
|
|
regs->ACTV = 0;
|
|
if ((dev_cfg->wakeup_source) && (dev_cfg->wakerx_gpio.port != NULL)) {
|
|
ret = gpio_pin_interrupt_configure_dt(&dev_cfg->wakerx_gpio,
|
|
GPIO_INT_MODE_EDGE | GPIO_INT_TRIG_LOW);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to configure UART wake interrupt (ret %d)", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED
|
|
static void uart_xec_rx_refresh_timeout(struct k_work *work)
|
|
{
|
|
ARG_UNUSED(work);
|
|
|
|
uart_xec_pm_policy_state_lock_put(UART_XEC_PM_POLICY_STATE_RX_FLAG);
|
|
}
|
|
#endif
|
|
#endif /* CONFIG_PM_DEVICE */
|
|
|
|
/**
|
|
* @brief Initialize individual UART port
|
|
*
|
|
* This routine is called to reset the chip in a quiescent state.
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return 0 if successful, failed otherwise
|
|
*/
|
|
static int uart_xec_init(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
int ret;
|
|
|
|
uart_clr_slp_en(dev);
|
|
|
|
ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = uart_xec_configure(dev, &dev_data->uart_config);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
dev_cfg->irq_config_func(dev);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
#ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED
|
|
k_work_init_delayable(&rx_refresh_timeout_work, uart_xec_rx_refresh_timeout);
|
|
#endif
|
|
if ((dev_cfg->wakeup_source) && (dev_cfg->wakerx_gpio.port != NULL)) {
|
|
static struct gpio_callback uart_xec_wake_cb;
|
|
|
|
gpio_init_callback(&uart_xec_wake_cb, uart_xec_wake_handler,
|
|
BIT(dev_cfg->wakerx_gpio.pin));
|
|
|
|
ret = gpio_add_callback(dev_cfg->wakerx_gpio.port, &uart_xec_wake_cb);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to add UART wake callback (err %d)", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Poll the device for input.
|
|
*
|
|
* @param dev UART device struct
|
|
* @param c Pointer to character
|
|
*
|
|
* @return 0 if a character arrived, -1 if the input buffer if empty.
|
|
*/
|
|
static int uart_xec_poll_in(const struct device *dev, unsigned char *c)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
int ret = -1;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
if ((regs->LSR & LSR_RXRDY) != 0) {
|
|
/* got a character */
|
|
*c = regs->RTXB;
|
|
ret = 0;
|
|
}
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Output a character in polled mode.
|
|
*
|
|
* Checks if the transmitter is empty. If empty, a character is written to
|
|
* the data register.
|
|
*
|
|
* If the hardware flow control is enabled then the handshake signal CTS has to
|
|
* be asserted in order to send a character.
|
|
*
|
|
* @param dev UART device struct
|
|
* @param c Character to send
|
|
*/
|
|
static void uart_xec_poll_out(const struct device *dev, unsigned char c)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
while ((regs->LSR & LSR_THRE) == 0) {
|
|
;
|
|
}
|
|
|
|
regs->RTXB = c;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
}
|
|
|
|
/**
|
|
* @brief Check if an error was received
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return one of UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING,
|
|
* UART_BREAK if an error was detected, 0 otherwise.
|
|
*/
|
|
static int uart_xec_err_check(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
int check = regs->LSR & LSR_EOB_MASK;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return check >> 1;
|
|
}
|
|
|
|
#if CONFIG_UART_INTERRUPT_DRIVEN
|
|
|
|
/**
|
|
* @brief Fill FIFO with data
|
|
*
|
|
* @param dev UART device struct
|
|
* @param tx_data Data to transmit
|
|
* @param size Number of bytes to send
|
|
*
|
|
* @return Number of bytes sent
|
|
*/
|
|
static int uart_xec_fifo_fill(const struct device *dev, const uint8_t *tx_data,
|
|
int size)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
int i;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
for (i = 0; (i < size) && (regs->LSR & LSR_THRE) != 0; i++) {
|
|
#if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED)
|
|
uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_TX_FLAG);
|
|
#endif
|
|
regs->RTXB = tx_data[i];
|
|
}
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* @brief Read data from FIFO
|
|
*
|
|
* @param dev UART device struct
|
|
* @param rxData Data container
|
|
* @param size Container size
|
|
*
|
|
* @return Number of bytes read
|
|
*/
|
|
static int uart_xec_fifo_read(const struct device *dev, uint8_t *rx_data,
|
|
const int size)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
int i;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
for (i = 0; (i < size) && (regs->LSR & LSR_RXRDY) != 0; i++) {
|
|
rx_data[i] = regs->RTXB;
|
|
}
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable TX interrupt in IER
|
|
*
|
|
* @param dev UART device struct
|
|
*/
|
|
static void uart_xec_irq_tx_enable(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
regs->IER |= IER_TBE;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable TX interrupt in IER
|
|
*
|
|
* @param dev UART device struct
|
|
*/
|
|
static void uart_xec_irq_tx_disable(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
regs->IER &= ~(IER_TBE);
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
}
|
|
|
|
/**
|
|
* @brief Check if Tx IRQ has been raised
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return 1 if an IRQ is ready, 0 otherwise
|
|
*/
|
|
static int uart_xec_irq_tx_ready(const struct device *dev)
|
|
{
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
int ret = ((IIRC(dev) & IIR_ID) == IIR_THRE) ? 1 : 0;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Check if nothing remains to be transmitted
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return 1 if nothing remains to be transmitted, 0 otherwise
|
|
*/
|
|
static int uart_xec_irq_tx_complete(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
int ret = ((regs->LSR & (LSR_TEMT | LSR_THRE))
|
|
== (LSR_TEMT | LSR_THRE)) ? 1 : 0;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable RX interrupt in IER
|
|
*
|
|
* @param dev UART device struct
|
|
*/
|
|
static void uart_xec_irq_rx_enable(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
regs->IER |= IER_RXRDY;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable RX interrupt in IER
|
|
*
|
|
* @param dev UART device struct
|
|
*/
|
|
static void uart_xec_irq_rx_disable(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
regs->IER &= ~(IER_RXRDY);
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
}
|
|
|
|
/**
|
|
* @brief Check if Rx IRQ has been raised
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return 1 if an IRQ is ready, 0 otherwise
|
|
*/
|
|
static int uart_xec_irq_rx_ready(const struct device *dev)
|
|
{
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
int ret = ((IIRC(dev) & IIR_ID) == IIR_RBRF) ? 1 : 0;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable error interrupt in IER
|
|
*
|
|
* @param dev UART device struct
|
|
*/
|
|
static void uart_xec_irq_err_enable(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
regs->IER |= IER_LSR;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable error interrupt in IER
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return 1 if an IRQ is ready, 0 otherwise
|
|
*/
|
|
static void uart_xec_irq_err_disable(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
regs->IER &= ~(IER_LSR);
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
}
|
|
|
|
/**
|
|
* @brief Check if any IRQ is pending
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return 1 if an IRQ is pending, 0 otherwise
|
|
*/
|
|
static int uart_xec_irq_is_pending(const struct device *dev)
|
|
{
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
int ret = (!(IIRC(dev) & IIR_NIP)) ? 1 : 0;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Update cached contents of IIR
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return Always 1
|
|
*/
|
|
static int uart_xec_irq_update(const struct device *dev)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
IIRC(dev) = regs->IIR_FCR;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Set the callback function pointer for IRQ.
|
|
*
|
|
* @param dev UART device struct
|
|
* @param cb Callback function pointer.
|
|
*/
|
|
static void uart_xec_irq_callback_set(const struct device *dev,
|
|
uart_irq_callback_user_data_t cb,
|
|
void *cb_data)
|
|
{
|
|
struct uart_xec_dev_data * const dev_data = dev->data;
|
|
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
|
|
|
|
dev_data->cb = cb;
|
|
dev_data->cb_data = cb_data;
|
|
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
}
|
|
|
|
/**
|
|
* @brief Interrupt service routine.
|
|
*
|
|
* This simply calls the callback function, if one exists.
|
|
*
|
|
* @param arg Argument to ISR.
|
|
*/
|
|
static void uart_xec_isr(const struct device *dev)
|
|
{
|
|
struct uart_xec_dev_data * const dev_data = dev->data;
|
|
#if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED)
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
int rx_ready = 0;
|
|
|
|
rx_ready = ((regs->LSR & LSR_RXRDY) == LSR_RXRDY) ? 1 : 0;
|
|
if (rx_ready) {
|
|
k_timeout_t delay = K_MSEC(CONFIG_UART_CONSOLE_INPUT_EXPIRED_TIMEOUT);
|
|
|
|
uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_RX_FLAG);
|
|
k_work_reschedule(&rx_refresh_timeout_work, delay);
|
|
}
|
|
#endif
|
|
|
|
if (dev_data->cb) {
|
|
dev_data->cb(dev, dev_data->cb_data);
|
|
}
|
|
|
|
#if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED)
|
|
if (uart_xec_irq_tx_complete(dev)) {
|
|
uart_xec_pm_policy_state_lock_put(UART_XEC_PM_POLICY_STATE_TX_FLAG);
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
/* clear ECIA GIRQ R/W1C status bit after UART status cleared */
|
|
uart_xec_girq_clr(dev);
|
|
}
|
|
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
|
|
#ifdef CONFIG_UART_XEC_LINE_CTRL
|
|
|
|
/**
|
|
* @brief Manipulate line control for UART.
|
|
*
|
|
* @param dev UART device struct
|
|
* @param ctrl The line control to be manipulated
|
|
* @param val Value to set the line control
|
|
*
|
|
* @return 0 if successful, failed otherwise
|
|
*/
|
|
static int uart_xec_line_ctrl_set(const struct device *dev,
|
|
uint32_t ctrl, uint32_t val)
|
|
{
|
|
const struct uart_xec_device_config * const dev_cfg = dev->config;
|
|
struct uart_xec_dev_data *dev_data = dev->data;
|
|
struct uart_regs *regs = dev_cfg->regs;
|
|
uint32_t mdc, chg;
|
|
k_spinlock_key_t key;
|
|
|
|
switch (ctrl) {
|
|
case UART_LINE_CTRL_BAUD_RATE:
|
|
set_baud_rate(dev, val);
|
|
return 0;
|
|
|
|
case UART_LINE_CTRL_RTS:
|
|
case UART_LINE_CTRL_DTR:
|
|
key = k_spin_lock(&dev_data->lock);
|
|
mdc = regs->MCR;
|
|
|
|
if (ctrl == UART_LINE_CTRL_RTS) {
|
|
chg = MCR_RTS;
|
|
} else {
|
|
chg = MCR_DTR;
|
|
}
|
|
|
|
if (val) {
|
|
mdc |= chg;
|
|
} else {
|
|
mdc &= ~(chg);
|
|
}
|
|
regs->MCR = mdc;
|
|
k_spin_unlock(&dev_data->lock, key);
|
|
return 0;
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#endif /* CONFIG_UART_XEC_LINE_CTRL */
|
|
|
|
static const struct uart_driver_api uart_xec_driver_api = {
|
|
.poll_in = uart_xec_poll_in,
|
|
.poll_out = uart_xec_poll_out,
|
|
.err_check = uart_xec_err_check,
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
.configure = uart_xec_configure,
|
|
.config_get = uart_xec_config_get,
|
|
#endif
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
|
|
.fifo_fill = uart_xec_fifo_fill,
|
|
.fifo_read = uart_xec_fifo_read,
|
|
.irq_tx_enable = uart_xec_irq_tx_enable,
|
|
.irq_tx_disable = uart_xec_irq_tx_disable,
|
|
.irq_tx_ready = uart_xec_irq_tx_ready,
|
|
.irq_tx_complete = uart_xec_irq_tx_complete,
|
|
.irq_rx_enable = uart_xec_irq_rx_enable,
|
|
.irq_rx_disable = uart_xec_irq_rx_disable,
|
|
.irq_rx_ready = uart_xec_irq_rx_ready,
|
|
.irq_err_enable = uart_xec_irq_err_enable,
|
|
.irq_err_disable = uart_xec_irq_err_disable,
|
|
.irq_is_pending = uart_xec_irq_is_pending,
|
|
.irq_update = uart_xec_irq_update,
|
|
.irq_callback_set = uart_xec_irq_callback_set,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_UART_XEC_LINE_CTRL
|
|
.line_ctrl_set = uart_xec_line_ctrl_set,
|
|
#endif
|
|
};
|
|
|
|
#define DEV_CONFIG_REG_INIT(n) \
|
|
.regs = (struct uart_regs *)(DT_INST_REG_ADDR(n)),
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
#define DEV_CONFIG_IRQ_FUNC_INIT(n) \
|
|
.irq_config_func = irq_config_func##n,
|
|
#define UART_XEC_IRQ_FUNC_DECLARE(n) \
|
|
static void irq_config_func##n(const struct device *dev);
|
|
#define UART_XEC_IRQ_FUNC_DEFINE(n) \
|
|
static void irq_config_func##n(const struct device *dev) \
|
|
{ \
|
|
ARG_UNUSED(dev); \
|
|
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
|
|
uart_xec_isr, DEVICE_DT_INST_GET(n), \
|
|
0); \
|
|
irq_enable(DT_INST_IRQN(n)); \
|
|
uart_xec_girq_en(DT_INST_PROP_BY_IDX(n, girqs, 0), \
|
|
DT_INST_PROP_BY_IDX(n, girqs, 1)); \
|
|
}
|
|
#else
|
|
/* !CONFIG_UART_INTERRUPT_DRIVEN */
|
|
#define DEV_CONFIG_IRQ_FUNC_INIT(n)
|
|
#define UART_XEC_IRQ_FUNC_DECLARE(n)
|
|
#define UART_XEC_IRQ_FUNC_DEFINE(n)
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
|
|
#define DEV_DATA_FLOW_CTRL(n) \
|
|
DT_INST_PROP_OR(n, hw_flow_control, UART_CFG_FLOW_CTRL_NONE)
|
|
|
|
/* To enable wakeup on the UART, the DTS needs to have two entries defined
|
|
* in the corresponding UART node in the DTS specifying it as a wake source
|
|
* and specifying the UART_RX GPIO; example as below
|
|
*
|
|
* wakerx-gpios = <&gpio_140_176 25 GPIO_ACTIVE_HIGH>;
|
|
* wakeup-source;
|
|
*/
|
|
#ifdef CONFIG_PM_DEVICE
|
|
#define XEC_UART_PM_WAKEUP(n) \
|
|
.wakeup_source = (uint8_t)DT_INST_PROP_OR(n, wakeup_source, 0), \
|
|
.wakerx_gpio = GPIO_DT_SPEC_INST_GET_OR(n, wakerx_gpios, {0}),
|
|
#else
|
|
#define XEC_UART_PM_WAKEUP(index) /* Not used */
|
|
#endif
|
|
|
|
#define UART_XEC_DEVICE_INIT(n) \
|
|
\
|
|
PINCTRL_DT_INST_DEFINE(n); \
|
|
\
|
|
UART_XEC_IRQ_FUNC_DECLARE(n); \
|
|
\
|
|
static const struct uart_xec_device_config uart_xec_dev_cfg_##n = { \
|
|
DEV_CONFIG_REG_INIT(n) \
|
|
.sys_clk_freq = DT_INST_PROP(n, clock_frequency), \
|
|
.girq_id = DT_INST_PROP_BY_IDX(n, girqs, 0), \
|
|
.girq_pos = DT_INST_PROP_BY_IDX(n, girqs, 1), \
|
|
.pcr_idx = DT_INST_PROP_BY_IDX(n, pcrs, 0), \
|
|
.pcr_bitpos = DT_INST_PROP_BY_IDX(n, pcrs, 1), \
|
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
|
|
XEC_UART_PM_WAKEUP(n) \
|
|
DEV_CONFIG_IRQ_FUNC_INIT(n) \
|
|
}; \
|
|
static struct uart_xec_dev_data uart_xec_dev_data_##n = { \
|
|
.uart_config.baudrate = DT_INST_PROP_OR(n, current_speed, 0), \
|
|
.uart_config.parity = UART_CFG_PARITY_NONE, \
|
|
.uart_config.stop_bits = UART_CFG_STOP_BITS_1, \
|
|
.uart_config.data_bits = UART_CFG_DATA_BITS_8, \
|
|
.uart_config.flow_ctrl = DEV_DATA_FLOW_CTRL(n), \
|
|
}; \
|
|
PM_DEVICE_DT_INST_DEFINE(n, uart_xec_pm_action); \
|
|
DEVICE_DT_INST_DEFINE(n, &uart_xec_init, \
|
|
PM_DEVICE_DT_INST_GET(n), \
|
|
&uart_xec_dev_data_##n, \
|
|
&uart_xec_dev_cfg_##n, \
|
|
PRE_KERNEL_1, \
|
|
CONFIG_SERIAL_INIT_PRIORITY, \
|
|
&uart_xec_driver_api); \
|
|
UART_XEC_IRQ_FUNC_DEFINE(n)
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(UART_XEC_DEVICE_INIT)
|