5db338c035
UART_RX_RDY event can be generated from UARTE interrupt or k_timer handler. When ENDRX event occurs then k_timer is stopped (it can be restarted if there is another buffer provided). However, if UARTE interrupt priority is higher than k_timer priority (RTC is used underneath) then k_timer handler may still be executed later. K_timer notifies new bytes based on RXDRDY HW event which is counter by the TIMER (using PPI). It may happen that RXDRDY event arrives due to byte received into RX FIFO but since there is not buffer provided it stays in that FIFO. Given all this, it was possible that RX_RDY event was reported from ENDRX UARTE event, timer was stopped but because UARTE interrupt had higher priority timer handler is executed after UARTE interrupt is handled. In timer handler TIMER counter reports more bytes and calls UART_RX_RDY event with null buffer and non-zero amount of bytes. Fixed by generating UART_RX_RDY event only if RX buffer is not null. Signed-off-by: Krzysztof Chruściński <krzysztof.chruscinski@nordicsemi.no>
2092 lines
57 KiB
C
2092 lines
57 KiB
C
/*
|
|
* Copyright (c) 2018-2021 Nordic Semiconductor ASA
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @brief Driver for Nordic Semiconductor nRF UARTE
|
|
*/
|
|
|
|
#include <zephyr/drivers/uart.h>
|
|
#include <zephyr/pm/device.h>
|
|
#include <hal/nrf_uarte.h>
|
|
#include <nrfx_timer.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <soc.h>
|
|
#include <helpers/nrfx_gppi.h>
|
|
#include <zephyr/linker/devicetree_regions.h>
|
|
#include <zephyr/irq.h>
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(uart_nrfx_uarte, CONFIG_UART_LOG_LEVEL);
|
|
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
|
|
/* Generalize PPI or DPPI channel management */
|
|
#if defined(CONFIG_HAS_HW_NRF_PPI)
|
|
#include <nrfx_ppi.h>
|
|
#define gppi_channel_t nrf_ppi_channel_t
|
|
#define gppi_channel_alloc nrfx_ppi_channel_alloc
|
|
#define gppi_channel_enable nrfx_ppi_channel_enable
|
|
#elif defined(CONFIG_HAS_HW_NRF_DPPIC)
|
|
#include <nrfx_dppi.h>
|
|
#define gppi_channel_t uint8_t
|
|
#define gppi_channel_alloc nrfx_dppi_channel_alloc
|
|
#define gppi_channel_enable nrfx_dppi_channel_enable
|
|
#else
|
|
#error "No PPI or DPPI"
|
|
#endif
|
|
|
|
|
|
#if (defined(CONFIG_HAS_HW_NRF_UARTE0) && \
|
|
defined(CONFIG_UART_0_INTERRUPT_DRIVEN)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE1) && \
|
|
defined(CONFIG_UART_1_INTERRUPT_DRIVEN)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE2) && \
|
|
defined(CONFIG_UART_2_INTERRUPT_DRIVEN)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE3) && \
|
|
defined(CONFIG_UART_3_INTERRUPT_DRIVEN))
|
|
#define UARTE_INTERRUPT_DRIVEN 1
|
|
#endif
|
|
|
|
#if (defined(CONFIG_HAS_HW_NRF_UARTE0) && !defined(CONFIG_UART_0_ASYNC)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE1) && !defined(CONFIG_UART_1_ASYNC)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE2) && !defined(CONFIG_UART_2_ASYNC)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE3) && !defined(CONFIG_UART_3_ASYNC))
|
|
#define UARTE_ANY_NONE_ASYNC 1
|
|
#endif
|
|
|
|
#if (defined(CONFIG_HAS_HW_NRF_UARTE0) && defined(CONFIG_UART_0_ASYNC)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE1) && defined(CONFIG_UART_1_ASYNC)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE2) && defined(CONFIG_UART_2_ASYNC)) || \
|
|
(defined(CONFIG_HAS_HW_NRF_UARTE3) && defined(CONFIG_UART_3_ASYNC))
|
|
#define UARTE_ANY_ASYNC 1
|
|
#endif
|
|
|
|
#if defined(CONFIG_UART_0_NRF_HW_ASYNC) || defined(CONFIG_UART_1_NRF_HW_ASYNC) || \
|
|
defined(CONFIG_UART_2_NRF_HW_ASYNC) || defined(CONFIG_UART_3_NRF_HW_ASYNC)
|
|
#define UARTE_HW_ASYNC 1
|
|
#endif
|
|
|
|
#if defined(CONFIG_UART_0_ENHANCED_POLL_OUT) || defined(CONFIG_UART_1_ENHANCED_POLL_OUT) || \
|
|
defined(CONFIG_UART_2_ENHANCED_POLL_OUT) || defined(CONFIG_UART_3_ENHANCED_POLL_OUT)
|
|
#define UARTE_ENHANCED_POLL_OUT 1
|
|
#endif
|
|
|
|
/*
|
|
* RX timeout is divided into time slabs, this define tells how many divisions
|
|
* should be made. More divisions - higher timeout accuracy and processor usage.
|
|
*/
|
|
#define RX_TIMEOUT_DIV 5
|
|
|
|
/* Size of hardware fifo in RX path. */
|
|
#define UARTE_HW_RX_FIFO_SIZE 5
|
|
|
|
#ifdef UARTE_ANY_ASYNC
|
|
struct uarte_async_cb {
|
|
uart_callback_t user_callback;
|
|
void *user_data;
|
|
|
|
const uint8_t *tx_buf;
|
|
volatile size_t tx_size;
|
|
const uint8_t *xfer_buf;
|
|
size_t xfer_len;
|
|
|
|
uint8_t *tx_cache;
|
|
size_t tx_cache_offset;
|
|
|
|
struct k_timer tx_timeout_timer;
|
|
|
|
uint8_t *rx_buf;
|
|
size_t rx_buf_len;
|
|
size_t rx_offset;
|
|
uint8_t *rx_next_buf;
|
|
size_t rx_next_buf_len;
|
|
uint32_t rx_total_byte_cnt; /* Total number of bytes received */
|
|
uint32_t rx_total_user_byte_cnt; /* Total number of bytes passed to user */
|
|
int32_t rx_timeout; /* Timeout set by user */
|
|
int32_t rx_timeout_slab; /* rx_timeout divided by RX_TIMEOUT_DIV */
|
|
int32_t rx_timeout_left; /* Current time left until user callback */
|
|
struct k_timer rx_timeout_timer;
|
|
union {
|
|
gppi_channel_t ppi;
|
|
uint32_t cnt;
|
|
} rx_cnt;
|
|
volatile int tx_amount;
|
|
|
|
atomic_t low_power_mask;
|
|
uint8_t rx_flush_buffer[UARTE_HW_RX_FIFO_SIZE];
|
|
uint8_t rx_flush_cnt;
|
|
volatile bool rx_enabled;
|
|
volatile bool discard_rx_fifo;
|
|
bool hw_rx_counting;
|
|
bool pending_tx;
|
|
/* Flag to ensure that RX timeout won't be executed during ENDRX ISR */
|
|
volatile bool is_in_irq;
|
|
};
|
|
#endif /* UARTE_ANY_ASYNC */
|
|
|
|
#ifdef UARTE_INTERRUPT_DRIVEN
|
|
struct uarte_nrfx_int_driven {
|
|
uart_irq_callback_user_data_t cb; /**< Callback function pointer */
|
|
void *cb_data; /**< Callback function arg */
|
|
uint8_t *tx_buffer;
|
|
uint16_t tx_buff_size;
|
|
volatile bool disable_tx_irq;
|
|
#ifdef CONFIG_PM_DEVICE
|
|
bool rx_irq_enabled;
|
|
#endif
|
|
atomic_t fifo_fill_lock;
|
|
};
|
|
#endif
|
|
|
|
/* Device data structure */
|
|
struct uarte_nrfx_data {
|
|
const struct device *dev;
|
|
struct uart_config uart_config;
|
|
#ifdef UARTE_INTERRUPT_DRIVEN
|
|
struct uarte_nrfx_int_driven *int_driven;
|
|
#endif
|
|
#ifdef UARTE_ANY_ASYNC
|
|
struct uarte_async_cb *async;
|
|
#endif
|
|
atomic_val_t poll_out_lock;
|
|
uint8_t *char_out;
|
|
uint8_t *rx_data;
|
|
gppi_channel_t ppi_ch_endtx;
|
|
};
|
|
|
|
#define UARTE_LOW_POWER_TX BIT(0)
|
|
#define UARTE_LOW_POWER_RX BIT(1)
|
|
|
|
/* If enabled, pins are managed when going to low power mode. */
|
|
#define UARTE_CFG_FLAG_GPIO_MGMT BIT(0)
|
|
|
|
/* If enabled then ENDTX is PPI'ed to TXSTOP */
|
|
#define UARTE_CFG_FLAG_PPI_ENDTX BIT(1)
|
|
|
|
/* If enabled then UARTE peripheral is disabled when not used. This allows
|
|
* to achieve lowest power consumption in idle.
|
|
*/
|
|
#define UARTE_CFG_FLAG_LOW_POWER BIT(4)
|
|
|
|
/**
|
|
* @brief Structure for UARTE configuration.
|
|
*/
|
|
struct uarte_nrfx_config {
|
|
NRF_UARTE_Type *uarte_regs; /* Instance address */
|
|
uint32_t flags;
|
|
bool disable_rx;
|
|
const struct pinctrl_dev_config *pcfg;
|
|
#ifdef UARTE_ANY_ASYNC
|
|
nrfx_timer_t timer;
|
|
#endif
|
|
};
|
|
|
|
static inline NRF_UARTE_Type *get_uarte_instance(const struct device *dev)
|
|
{
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
|
|
return config->uarte_regs;
|
|
}
|
|
|
|
static void endtx_isr(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
unsigned int key = irq_lock();
|
|
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
}
|
|
|
|
#ifdef UARTE_ANY_NONE_ASYNC
|
|
/**
|
|
* @brief Interrupt service routine.
|
|
*
|
|
* This simply calls the callback function, if one exists.
|
|
*
|
|
* @param arg Argument to ISR.
|
|
*/
|
|
static void uarte_nrfx_isr_int(const void *arg)
|
|
{
|
|
const struct device *dev = arg;
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
/* If interrupt driven and asynchronous APIs are disabled then UART
|
|
* interrupt is still called to stop TX. Unless it is done using PPI.
|
|
*/
|
|
if (nrf_uarte_int_enable_check(uarte, NRF_UARTE_INT_ENDTX_MASK) &&
|
|
nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {
|
|
endtx_isr(dev);
|
|
}
|
|
|
|
if (config->flags & UARTE_CFG_FLAG_LOW_POWER) {
|
|
unsigned int key = irq_lock();
|
|
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)) {
|
|
nrf_uarte_disable(uarte);
|
|
}
|
|
|
|
#ifdef UARTE_INTERRUPT_DRIVEN
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
if (!data->int_driven || data->int_driven->fifo_fill_lock == 0)
|
|
#endif
|
|
{
|
|
nrf_uarte_int_disable(uarte,
|
|
NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
#ifdef UARTE_INTERRUPT_DRIVEN
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
if (!data->int_driven) {
|
|
return;
|
|
}
|
|
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)) {
|
|
data->int_driven->fifo_fill_lock = 0;
|
|
if (data->int_driven->disable_tx_irq) {
|
|
nrf_uarte_int_disable(uarte,
|
|
NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
data->int_driven->disable_tx_irq = false;
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ERROR)) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ERROR);
|
|
}
|
|
|
|
if (data->int_driven->cb) {
|
|
data->int_driven->cb(dev, data->int_driven->cb_data);
|
|
}
|
|
#endif /* UARTE_INTERRUPT_DRIVEN */
|
|
}
|
|
#endif /* UARTE_ANY_NONE_ASYNC */
|
|
|
|
/**
|
|
* @brief Set the baud rate
|
|
*
|
|
* This routine set the given baud rate for the UARTE.
|
|
*
|
|
* @param dev UARTE device struct
|
|
* @param baudrate Baud rate
|
|
*
|
|
* @return 0 on success or error code
|
|
*/
|
|
static int baudrate_set(const struct device *dev, uint32_t baudrate)
|
|
{
|
|
nrf_uarte_baudrate_t nrf_baudrate; /* calculated baudrate divisor */
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
switch (baudrate) {
|
|
case 300:
|
|
/* value not supported by Nordic HAL */
|
|
nrf_baudrate = 0x00014000;
|
|
break;
|
|
case 600:
|
|
/* value not supported by Nordic HAL */
|
|
nrf_baudrate = 0x00027000;
|
|
break;
|
|
case 1200:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_1200;
|
|
break;
|
|
case 2400:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_2400;
|
|
break;
|
|
case 4800:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_4800;
|
|
break;
|
|
case 9600:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_9600;
|
|
break;
|
|
case 14400:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_14400;
|
|
break;
|
|
case 19200:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_19200;
|
|
break;
|
|
case 28800:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_28800;
|
|
break;
|
|
#if defined(UARTE_BAUDRATE_BAUDRATE_Baud31250)
|
|
case 31250:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_31250;
|
|
break;
|
|
#endif
|
|
case 38400:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_38400;
|
|
break;
|
|
#if defined(UARTE_BAUDRATE_BAUDRATE_Baud56000)
|
|
case 56000:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_56000;
|
|
break;
|
|
#endif
|
|
case 57600:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_57600;
|
|
break;
|
|
case 76800:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_76800;
|
|
break;
|
|
case 115200:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_115200;
|
|
break;
|
|
case 230400:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_230400;
|
|
break;
|
|
case 250000:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_250000;
|
|
break;
|
|
case 460800:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_460800;
|
|
break;
|
|
case 921600:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_921600;
|
|
break;
|
|
case 1000000:
|
|
nrf_baudrate = NRF_UARTE_BAUDRATE_1000000;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
nrf_uarte_baudrate_set(uarte, nrf_baudrate);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uarte_nrfx_configure(const struct device *dev,
|
|
const struct uart_config *cfg)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
nrf_uarte_config_t uarte_cfg;
|
|
|
|
#if defined(UARTE_CONFIG_STOP_Msk)
|
|
switch (cfg->stop_bits) {
|
|
case UART_CFG_STOP_BITS_1:
|
|
uarte_cfg.stop = NRF_UARTE_STOP_ONE;
|
|
break;
|
|
case UART_CFG_STOP_BITS_2:
|
|
uarte_cfg.stop = NRF_UARTE_STOP_TWO;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
#else
|
|
if (cfg->stop_bits != UART_CFG_STOP_BITS_1) {
|
|
return -ENOTSUP;
|
|
}
|
|
#endif
|
|
|
|
if (cfg->data_bits != UART_CFG_DATA_BITS_8) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
switch (cfg->flow_ctrl) {
|
|
case UART_CFG_FLOW_CTRL_NONE:
|
|
uarte_cfg.hwfc = NRF_UARTE_HWFC_DISABLED;
|
|
break;
|
|
case UART_CFG_FLOW_CTRL_RTS_CTS:
|
|
uarte_cfg.hwfc = NRF_UARTE_HWFC_ENABLED;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#if defined(UARTE_CONFIG_PARITYTYPE_Msk)
|
|
uarte_cfg.paritytype = NRF_UARTE_PARITYTYPE_EVEN;
|
|
#endif
|
|
switch (cfg->parity) {
|
|
case UART_CFG_PARITY_NONE:
|
|
uarte_cfg.parity = NRF_UARTE_PARITY_EXCLUDED;
|
|
break;
|
|
case UART_CFG_PARITY_EVEN:
|
|
uarte_cfg.parity = NRF_UARTE_PARITY_INCLUDED;
|
|
break;
|
|
#if defined(UARTE_CONFIG_PARITYTYPE_Msk)
|
|
case UART_CFG_PARITY_ODD:
|
|
uarte_cfg.parity = NRF_UARTE_PARITY_INCLUDED;
|
|
uarte_cfg.paritytype = NRF_UARTE_PARITYTYPE_ODD;
|
|
break;
|
|
#endif
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (baudrate_set(dev, cfg->baudrate) != 0) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
nrf_uarte_configure(get_uarte_instance(dev), &uarte_cfg);
|
|
|
|
data->uart_config = *cfg;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
static int uarte_nrfx_config_get(const struct device *dev,
|
|
struct uart_config *cfg)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
*cfg = data->uart_config;
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
|
|
|
|
|
|
static int uarte_nrfx_err_check(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
/* register bitfields maps to the defines in uart.h */
|
|
return nrf_uarte_errorsrc_get_and_clear(uarte);
|
|
}
|
|
|
|
/* Function returns true if new transfer can be started. Since TXSTOPPED
|
|
* (and ENDTX) is cleared before triggering new transfer, TX is ready for new
|
|
* transfer if any event is set.
|
|
*/
|
|
static bool is_tx_ready(const struct device *dev)
|
|
{
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
bool ppi_endtx = config->flags & UARTE_CFG_FLAG_PPI_ENDTX;
|
|
|
|
return nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED) ||
|
|
(!ppi_endtx ?
|
|
nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX) : 0);
|
|
}
|
|
|
|
/* Wait until the transmitter is in the idle state. When this function returns,
|
|
* IRQ's are locked with the returned key.
|
|
*/
|
|
static int wait_tx_ready(const struct device *dev)
|
|
{
|
|
unsigned int key;
|
|
|
|
do {
|
|
/* wait arbitrary time before back off. */
|
|
bool res;
|
|
|
|
#if defined(CONFIG_ARCH_POSIX)
|
|
NRFX_WAIT_FOR(is_tx_ready(dev), 33, 3, res);
|
|
#else
|
|
NRFX_WAIT_FOR(is_tx_ready(dev), 100, 1, res);
|
|
#endif
|
|
|
|
if (res) {
|
|
key = irq_lock();
|
|
if (is_tx_ready(dev)) {
|
|
break;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
|
|
k_msleep(1);
|
|
}
|
|
} while (1);
|
|
|
|
return key;
|
|
}
|
|
|
|
#ifdef UARTE_ANY_ASYNC
|
|
|
|
/* Using Macro instead of static inline function to handle NO_OPTIMIZATIONS case
|
|
* where static inline fails on linking.
|
|
*/
|
|
#define HW_RX_COUNTING_ENABLED(data) \
|
|
(IS_ENABLED(UARTE_HW_ASYNC) ? data->async->hw_rx_counting : false)
|
|
|
|
#endif /* UARTE_ANY_ASYNC */
|
|
|
|
static void uarte_enable(const struct device *dev, uint32_t mask)
|
|
{
|
|
#ifdef UARTE_ANY_ASYNC
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
if (data->async) {
|
|
bool disabled = data->async->low_power_mask == 0;
|
|
|
|
data->async->low_power_mask |= mask;
|
|
if (HW_RX_COUNTING_ENABLED(data) && disabled) {
|
|
const nrfx_timer_t *timer = &config->timer;
|
|
|
|
nrfx_timer_enable(timer);
|
|
|
|
for (int i = 0; i < data->async->rx_flush_cnt; i++) {
|
|
nrfx_timer_increment(timer);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
nrf_uarte_enable(get_uarte_instance(dev));
|
|
}
|
|
|
|
/* At this point we should have irq locked and any previous transfer completed.
|
|
* Transfer can be started, no need to wait for completion.
|
|
*/
|
|
static void tx_start(const struct device *dev, const uint8_t *buf, size_t len)
|
|
{
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
#if CONFIG_PM_DEVICE
|
|
enum pm_device_state state;
|
|
|
|
(void)pm_device_state_get(dev, &state);
|
|
if (state != PM_DEVICE_STATE_ACTIVE) {
|
|
return;
|
|
}
|
|
#endif
|
|
nrf_uarte_tx_buffer_set(uarte, buf, len);
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_TXSTOPPED);
|
|
|
|
if (config->flags & UARTE_CFG_FLAG_LOW_POWER) {
|
|
uarte_enable(dev, UARTE_LOW_POWER_TX);
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
}
|
|
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTTX);
|
|
}
|
|
|
|
#if defined(UARTE_ANY_ASYNC) || defined(CONFIG_PM_DEVICE)
|
|
static void uart_disable(const struct device *dev)
|
|
{
|
|
#ifdef UARTE_ANY_ASYNC
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
if (data->async && HW_RX_COUNTING_ENABLED(data)) {
|
|
nrfx_timer_disable(&config->timer);
|
|
/* Timer/counter value is reset when disabled. */
|
|
data->async->rx_total_byte_cnt = 0;
|
|
data->async->rx_total_user_byte_cnt = 0;
|
|
}
|
|
#endif
|
|
|
|
nrf_uarte_disable(get_uarte_instance(dev));
|
|
}
|
|
#endif
|
|
|
|
#ifdef UARTE_ANY_ASYNC
|
|
|
|
static void timer_handler(nrf_timer_event_t event_type, void *p_context) { }
|
|
static void rx_timeout(struct k_timer *timer);
|
|
static void tx_timeout(struct k_timer *timer);
|
|
|
|
static int uarte_nrfx_rx_counting_init(const struct device *dev)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
const struct uarte_nrfx_config *cfg = dev->config;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
int ret;
|
|
|
|
if (HW_RX_COUNTING_ENABLED(data)) {
|
|
nrfx_timer_config_t tmr_config = NRFX_TIMER_DEFAULT_CONFIG(
|
|
NRF_TIMER_BASE_FREQUENCY_GET(cfg->timer.p_reg));
|
|
|
|
tmr_config.mode = NRF_TIMER_MODE_COUNTER;
|
|
tmr_config.bit_width = NRF_TIMER_BIT_WIDTH_32;
|
|
ret = nrfx_timer_init(&cfg->timer,
|
|
&tmr_config,
|
|
timer_handler);
|
|
if (ret != NRFX_SUCCESS) {
|
|
LOG_ERR("Timer already initialized, "
|
|
"switching to software byte counting.");
|
|
data->async->hw_rx_counting = false;
|
|
} else {
|
|
nrfx_timer_enable(&cfg->timer);
|
|
nrfx_timer_clear(&cfg->timer);
|
|
}
|
|
|
|
ret = gppi_channel_alloc(&data->async->rx_cnt.ppi);
|
|
if (ret != NRFX_SUCCESS) {
|
|
LOG_ERR("Failed to allocate PPI Channel, "
|
|
"switching to software byte counting.");
|
|
data->async->hw_rx_counting = false;
|
|
nrfx_timer_uninit(&cfg->timer);
|
|
}
|
|
|
|
#if CONFIG_HAS_HW_NRF_PPI
|
|
ret = nrfx_ppi_channel_assign(
|
|
data->async->rx_cnt.ppi,
|
|
nrf_uarte_event_address_get(uarte,
|
|
NRF_UARTE_EVENT_RXDRDY),
|
|
nrfx_timer_task_address_get(&cfg->timer,
|
|
NRF_TIMER_TASK_COUNT));
|
|
|
|
if (ret != NRFX_SUCCESS) {
|
|
return -EIO;
|
|
}
|
|
#else
|
|
nrf_uarte_publish_set(uarte,
|
|
NRF_UARTE_EVENT_RXDRDY,
|
|
data->async->rx_cnt.ppi);
|
|
nrf_timer_subscribe_set(cfg->timer.p_reg,
|
|
NRF_TIMER_TASK_COUNT,
|
|
data->async->rx_cnt.ppi);
|
|
|
|
#endif
|
|
ret = gppi_channel_enable(data->async->rx_cnt.ppi);
|
|
if (ret != NRFX_SUCCESS) {
|
|
return -EIO;
|
|
}
|
|
} else {
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_RXDRDY_MASK);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uarte_nrfx_init(const struct device *dev)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
int ret = uarte_nrfx_rx_counting_init(dev);
|
|
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
data->async->low_power_mask = UARTE_LOW_POWER_TX;
|
|
nrf_uarte_int_enable(uarte,
|
|
NRF_UARTE_INT_ENDRX_MASK |
|
|
NRF_UARTE_INT_RXSTARTED_MASK |
|
|
NRF_UARTE_INT_ERROR_MASK |
|
|
NRF_UARTE_INT_RXTO_MASK);
|
|
nrf_uarte_enable(uarte);
|
|
|
|
/**
|
|
* Stop any currently running RX operations. This can occur when a
|
|
* bootloader sets up the UART hardware and does not clean it up
|
|
* before jumping to the next application.
|
|
*/
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED)) {
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
|
|
while (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXTO) &&
|
|
!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ERROR)) {
|
|
/* Busy wait for event to register */
|
|
}
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXTO);
|
|
}
|
|
|
|
k_timer_init(&data->async->rx_timeout_timer, rx_timeout, NULL);
|
|
k_timer_user_data_set(&data->async->rx_timeout_timer, data);
|
|
k_timer_init(&data->async->tx_timeout_timer, tx_timeout, NULL);
|
|
k_timer_user_data_set(&data->async->tx_timeout_timer, data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Attempt to start TX (asynchronous transfer). If hardware is not ready, then pending
|
|
* flag is set. When current poll_out is completed, pending transfer is started.
|
|
* Function must be called with interrupts locked.
|
|
*/
|
|
static void start_tx_locked(const struct device *dev, struct uarte_nrfx_data *data)
|
|
{
|
|
if (!is_tx_ready(dev)) {
|
|
/* Active poll out, postpone until it is completed. */
|
|
data->async->pending_tx = true;
|
|
} else {
|
|
data->async->pending_tx = false;
|
|
data->async->tx_amount = -1;
|
|
tx_start(dev, data->async->xfer_buf, data->async->xfer_len);
|
|
}
|
|
}
|
|
|
|
/* Setup cache buffer (used for sending data outside of RAM memory).
|
|
* During setup data is copied to cache buffer and transfer length is set.
|
|
*
|
|
* @return True if cache was set, false if no more data to put in cache.
|
|
*/
|
|
static bool setup_tx_cache(struct uarte_nrfx_data *data)
|
|
{
|
|
size_t remaining = data->async->tx_size - data->async->tx_cache_offset;
|
|
|
|
if (!remaining) {
|
|
return false;
|
|
}
|
|
|
|
size_t len = MIN(remaining, CONFIG_UART_ASYNC_TX_CACHE_SIZE);
|
|
|
|
data->async->xfer_len = len;
|
|
data->async->xfer_buf = data->async->tx_cache;
|
|
memcpy(data->async->tx_cache, &data->async->tx_buf[data->async->tx_cache_offset], len);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int uarte_nrfx_tx(const struct device *dev, const uint8_t *buf,
|
|
size_t len,
|
|
int32_t timeout)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
unsigned int key = irq_lock();
|
|
|
|
if (data->async->tx_size) {
|
|
irq_unlock(key);
|
|
return -EBUSY;
|
|
}
|
|
|
|
data->async->tx_size = len;
|
|
data->async->tx_buf = buf;
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
|
|
if (nrfx_is_in_ram(buf)) {
|
|
data->async->xfer_buf = buf;
|
|
data->async->xfer_len = len;
|
|
} else {
|
|
data->async->tx_cache_offset = 0;
|
|
(void)setup_tx_cache(data);
|
|
}
|
|
|
|
start_tx_locked(dev, data);
|
|
|
|
irq_unlock(key);
|
|
|
|
if (data->uart_config.flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS
|
|
&& timeout != SYS_FOREVER_US) {
|
|
k_timer_start(&data->async->tx_timeout_timer, K_USEC(timeout),
|
|
K_NO_WAIT);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int uarte_nrfx_tx_abort(const struct device *dev)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
if (data->async->tx_buf == NULL) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
data->async->pending_tx = false;
|
|
k_timer_stop(&data->async->tx_timeout_timer);
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void user_callback(const struct device *dev, struct uart_event *evt)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
if (data->async->user_callback) {
|
|
data->async->user_callback(dev, evt, data->async->user_data);
|
|
}
|
|
}
|
|
|
|
static void notify_uart_rx_rdy(const struct device *dev, size_t len)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
struct uart_event evt = {
|
|
.type = UART_RX_RDY,
|
|
.data.rx.buf = data->async->rx_buf,
|
|
.data.rx.len = len,
|
|
.data.rx.offset = data->async->rx_offset
|
|
};
|
|
|
|
user_callback(dev, &evt);
|
|
}
|
|
|
|
static void rx_buf_release(const struct device *dev, uint8_t **buf)
|
|
{
|
|
if (*buf) {
|
|
struct uart_event evt = {
|
|
.type = UART_RX_BUF_RELEASED,
|
|
.data.rx_buf.buf = *buf,
|
|
};
|
|
|
|
user_callback(dev, &evt);
|
|
*buf = NULL;
|
|
}
|
|
}
|
|
|
|
static void notify_rx_disable(const struct device *dev)
|
|
{
|
|
struct uart_event evt = {
|
|
.type = UART_RX_DISABLED,
|
|
};
|
|
|
|
user_callback(dev, (struct uart_event *)&evt);
|
|
}
|
|
|
|
static int uarte_nrfx_rx_enable(const struct device *dev, uint8_t *buf,
|
|
size_t len,
|
|
int32_t timeout)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
const struct uarte_nrfx_config *cfg = dev->config;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
if (cfg->disable_rx) {
|
|
__ASSERT(false, "TX only UARTE instance");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Signal error if RX is already enabled or if the driver is waiting
|
|
* for the RXTO event after a call to uart_rx_disable() to discard
|
|
* data from the UARTE internal RX FIFO.
|
|
*/
|
|
if (data->async->rx_enabled || data->async->discard_rx_fifo) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
data->async->rx_timeout = timeout;
|
|
data->async->rx_timeout_slab = timeout / RX_TIMEOUT_DIV;
|
|
|
|
data->async->rx_buf = buf;
|
|
data->async->rx_buf_len = len;
|
|
data->async->rx_offset = 0;
|
|
data->async->rx_next_buf = NULL;
|
|
data->async->rx_next_buf_len = 0;
|
|
|
|
if (cfg->flags & UARTE_CFG_FLAG_LOW_POWER) {
|
|
if (data->async->rx_flush_cnt) {
|
|
int cpy_len = MIN(len, data->async->rx_flush_cnt);
|
|
|
|
memcpy(buf, data->async->rx_flush_buffer, cpy_len);
|
|
buf += cpy_len;
|
|
len -= cpy_len;
|
|
|
|
/* If flush content filled whole new buffer complete the
|
|
* request and indicate rx being disabled.
|
|
*/
|
|
if (!len) {
|
|
data->async->rx_flush_cnt -= cpy_len;
|
|
notify_uart_rx_rdy(dev, cpy_len);
|
|
rx_buf_release(dev, &data->async->rx_buf);
|
|
notify_rx_disable(dev);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
nrf_uarte_rx_buffer_set(uarte, buf, len);
|
|
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
|
|
|
|
data->async->rx_enabled = true;
|
|
if (cfg->flags & UARTE_CFG_FLAG_LOW_POWER) {
|
|
unsigned int key = irq_lock();
|
|
|
|
uarte_enable(dev, UARTE_LOW_POWER_RX);
|
|
irq_unlock(key);
|
|
}
|
|
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uarte_nrfx_rx_buf_rsp(const struct device *dev, uint8_t *buf,
|
|
size_t len)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
int err;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
unsigned int key = irq_lock();
|
|
|
|
if (data->async->rx_buf == NULL) {
|
|
err = -EACCES;
|
|
} else if (data->async->rx_next_buf == NULL) {
|
|
data->async->rx_next_buf = buf;
|
|
data->async->rx_next_buf_len = len;
|
|
nrf_uarte_rx_buffer_set(uarte, buf, len);
|
|
nrf_uarte_shorts_enable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
|
|
err = 0;
|
|
} else {
|
|
err = -EBUSY;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int uarte_nrfx_callback_set(const struct device *dev,
|
|
uart_callback_t callback,
|
|
void *user_data)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
if (!data->async) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
data->async->user_callback = callback;
|
|
data->async->user_data = user_data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uarte_nrfx_rx_disable(const struct device *dev)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
if (data->async->rx_buf == NULL) {
|
|
return -EFAULT;
|
|
}
|
|
if (data->async->rx_next_buf != NULL) {
|
|
nrf_uarte_shorts_disable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
|
|
}
|
|
|
|
k_timer_stop(&data->async->rx_timeout_timer);
|
|
data->async->rx_enabled = false;
|
|
data->async->discard_rx_fifo = true;
|
|
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tx_timeout(struct k_timer *timer)
|
|
{
|
|
struct uarte_nrfx_data *data = k_timer_user_data_get(timer);
|
|
(void) uarte_nrfx_tx_abort(data->dev);
|
|
}
|
|
|
|
/**
|
|
* Whole timeout is divided by RX_TIMEOUT_DIV into smaller units, rx_timeout
|
|
* is executed periodically every rx_timeout_slab us. If between executions
|
|
* data was received, then we start counting down time from start, if not, then
|
|
* we subtract rx_timeout_slab from rx_timeout_left.
|
|
* If rx_timeout_left is less than rx_timeout_slab it means that receiving has
|
|
* timed out and we should tell user about that.
|
|
*/
|
|
static void rx_timeout(struct k_timer *timer)
|
|
{
|
|
struct uarte_nrfx_data *data = k_timer_user_data_get(timer);
|
|
const struct device *dev = data->dev;
|
|
const struct uarte_nrfx_config *cfg = dev->config;
|
|
uint32_t read;
|
|
|
|
if (data->async->is_in_irq) {
|
|
return;
|
|
}
|
|
|
|
/* Disable ENDRX ISR, in case ENDRX event is generated, it will be
|
|
* handled after rx_timeout routine is complete.
|
|
*/
|
|
nrf_uarte_int_disable(get_uarte_instance(dev),
|
|
NRF_UARTE_INT_ENDRX_MASK);
|
|
|
|
if (HW_RX_COUNTING_ENABLED(data)) {
|
|
read = nrfx_timer_capture(&cfg->timer, 0);
|
|
} else {
|
|
read = data->async->rx_cnt.cnt;
|
|
}
|
|
|
|
/* Check if data was received since last function call */
|
|
if (read != data->async->rx_total_byte_cnt) {
|
|
data->async->rx_total_byte_cnt = read;
|
|
data->async->rx_timeout_left = data->async->rx_timeout;
|
|
}
|
|
|
|
/* Check if there is data that was not sent to user yet
|
|
* Note though that 'len' is a count of data bytes received, but not
|
|
* necessarily the amount available in the current buffer
|
|
*/
|
|
int32_t len = data->async->rx_total_byte_cnt
|
|
- data->async->rx_total_user_byte_cnt;
|
|
|
|
if (!HW_RX_COUNTING_ENABLED(data) &&
|
|
(len < 0)) {
|
|
/* Prevent too low value of rx_cnt.cnt which may occur due to
|
|
* latencies in handling of the RXRDY interrupt.
|
|
* At this point, the number of received bytes is at least
|
|
* equal to what was reported to the user.
|
|
*/
|
|
data->async->rx_cnt.cnt = data->async->rx_total_user_byte_cnt;
|
|
len = 0;
|
|
}
|
|
|
|
/* Check for current buffer being full.
|
|
* if the UART receives characters before the ENDRX is handled
|
|
* and the 'next' buffer is set up, then the SHORT between ENDRX and
|
|
* STARTRX will mean that data will be going into to the 'next' buffer
|
|
* until the ENDRX event gets a chance to be handled.
|
|
*/
|
|
bool clipped = false;
|
|
|
|
if (len + data->async->rx_offset > data->async->rx_buf_len) {
|
|
len = data->async->rx_buf_len - data->async->rx_offset;
|
|
clipped = true;
|
|
}
|
|
|
|
if (len > 0) {
|
|
if (clipped ||
|
|
(data->async->rx_timeout_left
|
|
< data->async->rx_timeout_slab)) {
|
|
/* rx_timeout us elapsed since last receiving */
|
|
if (data->async->rx_buf != NULL) {
|
|
notify_uart_rx_rdy(dev, len);
|
|
data->async->rx_offset += len;
|
|
data->async->rx_total_user_byte_cnt += len;
|
|
}
|
|
} else {
|
|
data->async->rx_timeout_left -=
|
|
data->async->rx_timeout_slab;
|
|
}
|
|
|
|
/* If there's nothing left to report until the buffers are
|
|
* switched then the timer can be stopped
|
|
*/
|
|
if (clipped) {
|
|
k_timer_stop(&data->async->rx_timeout_timer);
|
|
}
|
|
}
|
|
|
|
nrf_uarte_int_enable(get_uarte_instance(dev),
|
|
NRF_UARTE_INT_ENDRX_MASK);
|
|
|
|
}
|
|
|
|
#define UARTE_ERROR_FROM_MASK(mask) \
|
|
((mask) & NRF_UARTE_ERROR_OVERRUN_MASK ? UART_ERROR_OVERRUN \
|
|
: (mask) & NRF_UARTE_ERROR_PARITY_MASK ? UART_ERROR_PARITY \
|
|
: (mask) & NRF_UARTE_ERROR_FRAMING_MASK ? UART_ERROR_FRAMING \
|
|
: (mask) & NRF_UARTE_ERROR_BREAK_MASK ? UART_BREAK \
|
|
: 0)
|
|
|
|
static void error_isr(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
uint32_t err = nrf_uarte_errorsrc_get_and_clear(uarte);
|
|
struct uart_event evt = {
|
|
.type = UART_RX_STOPPED,
|
|
.data.rx_stop.reason = UARTE_ERROR_FROM_MASK(err),
|
|
};
|
|
user_callback(dev, &evt);
|
|
(void) uarte_nrfx_rx_disable(dev);
|
|
}
|
|
|
|
static void rxstarted_isr(const struct device *dev)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
struct uart_event evt = {
|
|
.type = UART_RX_BUF_REQUEST,
|
|
};
|
|
user_callback(dev, &evt);
|
|
if (data->async->rx_timeout != SYS_FOREVER_US) {
|
|
data->async->rx_timeout_left = data->async->rx_timeout;
|
|
k_timer_start(&data->async->rx_timeout_timer,
|
|
K_USEC(data->async->rx_timeout_slab),
|
|
K_USEC(data->async->rx_timeout_slab));
|
|
}
|
|
}
|
|
|
|
static void endrx_isr(const struct device *dev)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
data->async->is_in_irq = true;
|
|
|
|
/* ensure rx timer is stopped - it will be restarted in RXSTARTED
|
|
* handler if needed
|
|
*/
|
|
k_timer_stop(&data->async->rx_timeout_timer);
|
|
|
|
/* this is the amount that the EasyDMA controller has copied into the
|
|
* buffer
|
|
*/
|
|
const int rx_amount = nrf_uarte_rx_amount_get(uarte) +
|
|
data->async->rx_flush_cnt;
|
|
|
|
data->async->rx_flush_cnt = 0;
|
|
|
|
/* The 'rx_offset' can be bigger than 'rx_amount', so it the length
|
|
* of data we report back the the user may need to be clipped.
|
|
* This can happen because the 'rx_offset' count derives from RXRDY
|
|
* events, which can occur already for the next buffer before we are
|
|
* here to handle this buffer. (The next buffer is now already active
|
|
* because of the ENDRX_STARTRX shortcut)
|
|
*/
|
|
int rx_len = rx_amount - data->async->rx_offset;
|
|
|
|
if (rx_len < 0) {
|
|
rx_len = 0;
|
|
}
|
|
|
|
data->async->rx_total_user_byte_cnt += rx_len;
|
|
|
|
/* Only send the RX_RDY event if there is something to send */
|
|
if (rx_len > 0) {
|
|
notify_uart_rx_rdy(dev, rx_len);
|
|
}
|
|
|
|
if (!data->async->rx_enabled) {
|
|
data->async->is_in_irq = false;
|
|
return;
|
|
}
|
|
|
|
rx_buf_release(dev, &data->async->rx_buf);
|
|
|
|
/* If there is a next buffer, then STARTRX will have already been
|
|
* invoked by the short (the next buffer will be filling up already)
|
|
* and here we just do the swap of which buffer the driver is following,
|
|
* the next rx_timeout() will update the rx_offset.
|
|
*/
|
|
unsigned int key = irq_lock();
|
|
|
|
if (data->async->rx_next_buf) {
|
|
data->async->rx_buf = data->async->rx_next_buf;
|
|
data->async->rx_buf_len = data->async->rx_next_buf_len;
|
|
data->async->rx_next_buf = NULL;
|
|
data->async->rx_next_buf_len = 0;
|
|
|
|
data->async->rx_offset = 0;
|
|
/* Check is based on assumption that ISR handler handles
|
|
* ENDRX before RXSTARTED so if short was set on time, RXSTARTED
|
|
* event will be set.
|
|
*/
|
|
if (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED)) {
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
|
|
}
|
|
/* Remove the short until the subsequent next buffer is setup */
|
|
nrf_uarte_shorts_disable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
|
|
} else {
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
data->async->is_in_irq = false;
|
|
}
|
|
|
|
/* Function for flushing internal RX fifo. Function can be called in case
|
|
* flushed data is discarded or when data is valid and needs to be retrieved.
|
|
*
|
|
* However, UARTE does not update RXAMOUNT register if fifo is empty. Old value
|
|
* remains. In certain cases it makes it impossible to distinguish between
|
|
* case when fifo was empty and not. Function is trying to minimize chances of
|
|
* error with following measures:
|
|
* - RXAMOUNT is read before flushing and compared against value after flushing
|
|
* if they differ it indicates that data was flushed
|
|
* - user buffer is dirtied and if RXAMOUNT did not changed it is checked if
|
|
* it is still dirty. If not then it indicates that data was flushed
|
|
*
|
|
* In other cases function indicates that fifo was empty. It means that if
|
|
* number of bytes in the fifo equal last rx transfer length and data is equal
|
|
* to dirty marker it will be discarded.
|
|
*
|
|
* @param dev Device.
|
|
* @param buf Buffer for flushed data, null indicates that flushed data can be
|
|
* dropped.
|
|
* @param len Buffer size, not used if @p buf is null.
|
|
*
|
|
* @return number of bytes flushed from the fifo.
|
|
*/
|
|
static uint8_t rx_flush(const struct device *dev, uint8_t *buf, uint32_t len)
|
|
{
|
|
/* Flushing RX fifo requires buffer bigger than 4 bytes to empty fifo*/
|
|
static const uint8_t dirty;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
uint32_t prev_rx_amount = nrf_uarte_rx_amount_get(uarte);
|
|
uint8_t tmp_buf[UARTE_HW_RX_FIFO_SIZE];
|
|
uint8_t *flush_buf = buf ? buf : tmp_buf;
|
|
size_t flush_len = buf ? len : sizeof(tmp_buf);
|
|
|
|
if (buf) {
|
|
memset(buf, dirty, len);
|
|
flush_buf = buf;
|
|
flush_len = len;
|
|
} else {
|
|
flush_buf = tmp_buf;
|
|
flush_len = sizeof(tmp_buf);
|
|
}
|
|
|
|
nrf_uarte_rx_buffer_set(uarte, flush_buf, flush_len);
|
|
/* Final part of handling RXTO event is in ENDRX interrupt
|
|
* handler. ENDRX is generated as a result of FLUSHRX task.
|
|
*/
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_FLUSHRX);
|
|
while (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
|
|
/* empty */
|
|
}
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
|
|
if (!buf) {
|
|
return nrf_uarte_rx_amount_get(uarte);
|
|
}
|
|
|
|
uint32_t rx_amount = nrf_uarte_rx_amount_get(uarte);
|
|
|
|
if (rx_amount != prev_rx_amount) {
|
|
return rx_amount;
|
|
}
|
|
|
|
for (int i = 0; i < flush_len; i++) {
|
|
if (buf[i] != dirty) {
|
|
return rx_amount;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void async_uart_release(const struct device *dev, uint32_t dir_mask)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
unsigned int key = irq_lock();
|
|
|
|
data->async->low_power_mask &= ~dir_mask;
|
|
if (!data->async->low_power_mask) {
|
|
if (dir_mask == UARTE_LOW_POWER_RX) {
|
|
data->async->rx_flush_cnt =
|
|
rx_flush(dev, data->async->rx_flush_buffer,
|
|
sizeof(data->async->rx_flush_buffer));
|
|
}
|
|
|
|
uart_disable(dev);
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
/* This handler is called when the receiver is stopped. If rx was aborted
|
|
* data from fifo is flushed.
|
|
*/
|
|
static void rxto_isr(const struct device *dev)
|
|
{
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
rx_buf_release(dev, &data->async->rx_buf);
|
|
rx_buf_release(dev, &data->async->rx_next_buf);
|
|
|
|
/* This point can be reached in two cases:
|
|
* 1. RX is disabled because all provided RX buffers have been filled.
|
|
* 2. RX was explicitly disabled by a call to uart_rx_disable().
|
|
* In both cases, the rx_enabled flag is cleared, so that RX can be
|
|
* enabled again.
|
|
* In the second case, additionally, data from the UARTE internal RX
|
|
* FIFO need to be discarded.
|
|
*/
|
|
data->async->rx_enabled = false;
|
|
if (data->async->discard_rx_fifo) {
|
|
data->async->discard_rx_fifo = false;
|
|
(void)rx_flush(dev, NULL, 0);
|
|
}
|
|
|
|
if (config->flags & UARTE_CFG_FLAG_LOW_POWER) {
|
|
async_uart_release(dev, UARTE_LOW_POWER_RX);
|
|
}
|
|
|
|
notify_rx_disable(dev);
|
|
}
|
|
|
|
static void txstopped_isr(const struct device *dev)
|
|
{
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
unsigned int key;
|
|
|
|
if (config->flags & UARTE_CFG_FLAG_LOW_POWER) {
|
|
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
async_uart_release(dev, UARTE_LOW_POWER_TX);
|
|
|
|
if (!data->async->tx_size) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!data->async->tx_buf) {
|
|
return;
|
|
}
|
|
|
|
key = irq_lock();
|
|
size_t amount = (data->async->tx_amount >= 0) ?
|
|
data->async->tx_amount : nrf_uarte_tx_amount_get(uarte);
|
|
|
|
irq_unlock(key);
|
|
|
|
/* If there is a pending tx request, it means that uart_tx()
|
|
* was called when there was ongoing uart_poll_out. Handling
|
|
* TXSTOPPED interrupt means that uart_poll_out has completed.
|
|
*/
|
|
if (data->async->pending_tx) {
|
|
key = irq_lock();
|
|
start_tx_locked(dev, data);
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
/* Cache buffer is used because tx_buf wasn't in RAM. */
|
|
if (data->async->tx_buf != data->async->xfer_buf) {
|
|
/* In that case setup next chunk. If that was the last chunk
|
|
* fall back to reporting TX_DONE.
|
|
*/
|
|
if (amount == data->async->xfer_len) {
|
|
data->async->tx_cache_offset += amount;
|
|
if (setup_tx_cache(data)) {
|
|
key = irq_lock();
|
|
start_tx_locked(dev, data);
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
/* Amount is already included in tx_cache_offset. */
|
|
amount = data->async->tx_cache_offset;
|
|
} else {
|
|
/* TX was aborted, include tx_cache_offset in amount. */
|
|
amount += data->async->tx_cache_offset;
|
|
}
|
|
}
|
|
|
|
k_timer_stop(&data->async->tx_timeout_timer);
|
|
|
|
struct uart_event evt = {
|
|
.data.tx.buf = data->async->tx_buf,
|
|
.data.tx.len = amount,
|
|
};
|
|
if (amount == data->async->tx_size) {
|
|
evt.type = UART_TX_DONE;
|
|
} else {
|
|
evt.type = UART_TX_ABORTED;
|
|
}
|
|
|
|
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
data->async->tx_buf = NULL;
|
|
data->async->tx_size = 0;
|
|
|
|
user_callback(dev, &evt);
|
|
}
|
|
|
|
static void uarte_nrfx_isr_async(const void *arg)
|
|
{
|
|
const struct device *dev = arg;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
if (!HW_RX_COUNTING_ENABLED(data)
|
|
&& nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXDRDY)) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXDRDY);
|
|
data->async->rx_cnt.cnt++;
|
|
return;
|
|
}
|
|
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ERROR)) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ERROR);
|
|
error_isr(dev);
|
|
}
|
|
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)
|
|
&& nrf_uarte_int_enable_check(uarte, NRF_UARTE_INT_ENDRX_MASK)) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
endrx_isr(dev);
|
|
}
|
|
|
|
/* RXSTARTED must be handled after ENDRX because it starts the RX timeout
|
|
* and if order is swapped then ENDRX will stop this timeout.
|
|
* Skip if ENDRX is set when RXSTARTED is set. It means that
|
|
* ENDRX occurred after check for ENDRX in isr which may happen when
|
|
* UARTE interrupt got preempted. Events are not cleared
|
|
* and isr will be called again. ENDRX will be handled first.
|
|
*/
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED) &&
|
|
!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
|
|
rxstarted_isr(dev);
|
|
}
|
|
|
|
/* RXTO must be handled after ENDRX which should notify the buffer.
|
|
* Skip if ENDRX is set when RXTO is set. It means that
|
|
* ENDRX occurred after check for ENDRX in isr which may happen when
|
|
* UARTE interrupt got preempted. Events are not cleared
|
|
* and isr will be called again. ENDRX will be handled first.
|
|
*/
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXTO) &&
|
|
!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXTO);
|
|
rxto_isr(dev);
|
|
}
|
|
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)
|
|
&& nrf_uarte_int_enable_check(uarte, NRF_UARTE_INT_ENDTX_MASK)) {
|
|
endtx_isr(dev);
|
|
}
|
|
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)
|
|
&& nrf_uarte_int_enable_check(uarte,
|
|
NRF_UARTE_INT_TXSTOPPED_MASK)) {
|
|
txstopped_isr(dev);
|
|
}
|
|
}
|
|
|
|
#endif /* UARTE_ANY_ASYNC */
|
|
|
|
/**
|
|
* @brief Poll the device for input.
|
|
*
|
|
* @param dev UARTE device struct
|
|
* @param c Pointer to character
|
|
*
|
|
* @return 0 if a character arrived, -1 if the input buffer is empty.
|
|
*/
|
|
static int uarte_nrfx_poll_in(const struct device *dev, unsigned char *c)
|
|
{
|
|
|
|
const struct uarte_nrfx_data *data = dev->data;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
#ifdef UARTE_ANY_ASYNC
|
|
if (data->async) {
|
|
return -ENOTSUP;
|
|
}
|
|
#endif
|
|
|
|
if (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
|
|
return -1;
|
|
}
|
|
|
|
*c = *data->rx_data;
|
|
|
|
/* clear the interrupt */
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Output a character in polled mode.
|
|
*
|
|
* @param dev UARTE device struct
|
|
* @param c Character to send
|
|
*/
|
|
static void uarte_nrfx_poll_out(const struct device *dev, unsigned char c)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
bool isr_mode = k_is_in_isr() || k_is_pre_kernel();
|
|
unsigned int key;
|
|
|
|
if (isr_mode) {
|
|
while (1) {
|
|
key = irq_lock();
|
|
if (is_tx_ready(dev)) {
|
|
#if UARTE_ANY_ASYNC
|
|
if (data->async && data->async->tx_size &&
|
|
data->async->tx_amount < 0) {
|
|
data->async->tx_amount =
|
|
nrf_uarte_tx_amount_get(
|
|
get_uarte_instance(dev));
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
Z_SPIN_DELAY(3);
|
|
}
|
|
} else {
|
|
key = wait_tx_ready(dev);
|
|
}
|
|
|
|
*data->char_out = c;
|
|
tx_start(dev, data->char_out, 1);
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
|
|
#ifdef UARTE_INTERRUPT_DRIVEN
|
|
/** Interrupt driven FIFO fill function */
|
|
static int uarte_nrfx_fifo_fill(const struct device *dev,
|
|
const uint8_t *tx_data,
|
|
int len)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
len = MIN(len, data->int_driven->tx_buff_size);
|
|
if (!atomic_cas(&data->int_driven->fifo_fill_lock, 0, 1)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Copy data to RAM buffer for EasyDMA transfer */
|
|
memcpy(data->int_driven->tx_buffer, tx_data, len);
|
|
|
|
unsigned int key = irq_lock();
|
|
|
|
if (!is_tx_ready(dev)) {
|
|
data->int_driven->fifo_fill_lock = 0;
|
|
len = 0;
|
|
} else {
|
|
tx_start(dev, data->int_driven->tx_buffer, len);
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
return len;
|
|
}
|
|
|
|
/** Interrupt driven FIFO read function */
|
|
static int uarte_nrfx_fifo_read(const struct device *dev,
|
|
uint8_t *rx_data,
|
|
const int size)
|
|
{
|
|
int num_rx = 0;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
const struct uarte_nrfx_data *data = dev->data;
|
|
|
|
if (size > 0 && nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
|
|
/* Clear the interrupt */
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
|
|
/* Receive a character */
|
|
rx_data[num_rx++] = *data->rx_data;
|
|
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
|
|
}
|
|
|
|
return num_rx;
|
|
}
|
|
|
|
/** Interrupt driven transfer enabling function */
|
|
static void uarte_nrfx_irq_tx_enable(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
unsigned int key = irq_lock();
|
|
|
|
data->int_driven->disable_tx_irq = false;
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
/** Interrupt driven transfer disabling function */
|
|
static void uarte_nrfx_irq_tx_disable(const struct device *dev)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
/* TX IRQ will be disabled after current transmission is finished */
|
|
data->int_driven->disable_tx_irq = true;
|
|
}
|
|
|
|
/** Interrupt driven transfer ready function */
|
|
static int uarte_nrfx_irq_tx_ready_complete(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
/* ENDTX flag is always on so that ISR is called when we enable TX IRQ.
|
|
* Because of that we have to explicitly check if ENDTX interrupt is
|
|
* enabled, otherwise this function would always return true no matter
|
|
* what would be the source of interrupt.
|
|
*/
|
|
bool ready = !data->int_driven->disable_tx_irq &&
|
|
nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED) &&
|
|
nrf_uarte_int_enable_check(uarte,
|
|
NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
|
|
if (ready) {
|
|
data->int_driven->fifo_fill_lock = 0;
|
|
}
|
|
|
|
return ready;
|
|
}
|
|
|
|
static int uarte_nrfx_irq_rx_ready(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
return nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
}
|
|
|
|
/** Interrupt driven receiver enabling function */
|
|
static void uarte_nrfx_irq_rx_enable(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ENDRX_MASK);
|
|
}
|
|
|
|
/** Interrupt driven receiver disabling function */
|
|
static void uarte_nrfx_irq_rx_disable(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ENDRX_MASK);
|
|
}
|
|
|
|
/** Interrupt driven error enabling function */
|
|
static void uarte_nrfx_irq_err_enable(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ERROR_MASK);
|
|
}
|
|
|
|
/** Interrupt driven error disabling function */
|
|
static void uarte_nrfx_irq_err_disable(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ERROR_MASK);
|
|
}
|
|
|
|
/** Interrupt driven pending status function */
|
|
static int uarte_nrfx_irq_is_pending(const struct device *dev)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
|
|
return ((nrf_uarte_int_enable_check(uarte,
|
|
NRF_UARTE_INT_TXSTOPPED_MASK) &&
|
|
uarte_nrfx_irq_tx_ready_complete(dev))
|
|
||
|
|
(nrf_uarte_int_enable_check(uarte,
|
|
NRF_UARTE_INT_ENDRX_MASK) &&
|
|
uarte_nrfx_irq_rx_ready(dev)));
|
|
}
|
|
|
|
/** Interrupt driven interrupt update function */
|
|
static int uarte_nrfx_irq_update(const struct device *dev)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/** Set the callback function */
|
|
static void uarte_nrfx_irq_callback_set(const struct device *dev,
|
|
uart_irq_callback_user_data_t cb,
|
|
void *cb_data)
|
|
{
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
|
|
data->int_driven->cb = cb;
|
|
data->int_driven->cb_data = cb_data;
|
|
}
|
|
#endif /* UARTE_INTERRUPT_DRIVEN */
|
|
|
|
static const struct uart_driver_api uart_nrfx_uarte_driver_api = {
|
|
.poll_in = uarte_nrfx_poll_in,
|
|
.poll_out = uarte_nrfx_poll_out,
|
|
.err_check = uarte_nrfx_err_check,
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
.configure = uarte_nrfx_configure,
|
|
.config_get = uarte_nrfx_config_get,
|
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
|
|
#ifdef UARTE_ANY_ASYNC
|
|
.callback_set = uarte_nrfx_callback_set,
|
|
.tx = uarte_nrfx_tx,
|
|
.tx_abort = uarte_nrfx_tx_abort,
|
|
.rx_enable = uarte_nrfx_rx_enable,
|
|
.rx_buf_rsp = uarte_nrfx_rx_buf_rsp,
|
|
.rx_disable = uarte_nrfx_rx_disable,
|
|
#endif /* UARTE_ANY_ASYNC */
|
|
#ifdef UARTE_INTERRUPT_DRIVEN
|
|
.fifo_fill = uarte_nrfx_fifo_fill,
|
|
.fifo_read = uarte_nrfx_fifo_read,
|
|
.irq_tx_enable = uarte_nrfx_irq_tx_enable,
|
|
.irq_tx_disable = uarte_nrfx_irq_tx_disable,
|
|
.irq_tx_ready = uarte_nrfx_irq_tx_ready_complete,
|
|
.irq_rx_enable = uarte_nrfx_irq_rx_enable,
|
|
.irq_rx_disable = uarte_nrfx_irq_rx_disable,
|
|
.irq_tx_complete = uarte_nrfx_irq_tx_ready_complete,
|
|
.irq_rx_ready = uarte_nrfx_irq_rx_ready,
|
|
.irq_err_enable = uarte_nrfx_irq_err_enable,
|
|
.irq_err_disable = uarte_nrfx_irq_err_disable,
|
|
.irq_is_pending = uarte_nrfx_irq_is_pending,
|
|
.irq_update = uarte_nrfx_irq_update,
|
|
.irq_callback_set = uarte_nrfx_irq_callback_set,
|
|
#endif /* UARTE_INTERRUPT_DRIVEN */
|
|
};
|
|
|
|
static int endtx_stoptx_ppi_init(NRF_UARTE_Type *uarte,
|
|
struct uarte_nrfx_data *data)
|
|
{
|
|
nrfx_err_t ret;
|
|
|
|
ret = gppi_channel_alloc(&data->ppi_ch_endtx);
|
|
if (ret != NRFX_SUCCESS) {
|
|
LOG_ERR("Failed to allocate PPI Channel");
|
|
return -EIO;
|
|
}
|
|
|
|
nrfx_gppi_channel_endpoints_setup(data->ppi_ch_endtx,
|
|
nrf_uarte_event_address_get(uarte, NRF_UARTE_EVENT_ENDTX),
|
|
nrf_uarte_task_address_get(uarte, NRF_UARTE_TASK_STOPTX));
|
|
nrfx_gppi_channels_enable(BIT(data->ppi_ch_endtx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uarte_instance_init(const struct device *dev,
|
|
uint8_t interrupts_active)
|
|
{
|
|
int err;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
const struct uarte_nrfx_config *cfg = dev->config;
|
|
|
|
nrf_uarte_disable(uarte);
|
|
|
|
data->dev = dev;
|
|
|
|
#ifdef CONFIG_ARCH_POSIX
|
|
/* For simulation the DT provided peripheral address needs to be corrected */
|
|
((struct pinctrl_dev_config *)cfg->pcfg)->reg = (uintptr_t)cfg->uarte_regs;
|
|
#endif
|
|
|
|
err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
err = uarte_nrfx_configure(dev, &data->uart_config);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
if (IS_ENABLED(UARTE_ENHANCED_POLL_OUT) &&
|
|
cfg->flags & UARTE_CFG_FLAG_PPI_ENDTX) {
|
|
err = endtx_stoptx_ppi_init(uarte, data);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef UARTE_ANY_ASYNC
|
|
if (data->async) {
|
|
err = uarte_nrfx_init(dev);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
/* Enable receiver and transmitter */
|
|
nrf_uarte_enable(uarte);
|
|
|
|
if (!cfg->disable_rx) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
|
|
nrf_uarte_rx_buffer_set(uarte, data->rx_data, 1);
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
|
|
}
|
|
}
|
|
|
|
if (!(cfg->flags & UARTE_CFG_FLAG_PPI_ENDTX)) {
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ENDTX_MASK);
|
|
}
|
|
|
|
if (cfg->flags & UARTE_CFG_FLAG_LOW_POWER) {
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
|
|
}
|
|
|
|
/* Set TXSTOPPED event by requesting fake (zero-length) transfer.
|
|
* Pointer to RAM variable (data->tx_buffer) is set because otherwise
|
|
* such operation may result in HardFault or RAM corruption.
|
|
*/
|
|
nrf_uarte_tx_buffer_set(uarte, data->char_out, 0);
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTTX);
|
|
|
|
/* switch off transmitter to save an energy */
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
/** @brief Pend until TX is stopped.
|
|
*
|
|
* There are 2 configurations that must be handled:
|
|
* - ENDTX->TXSTOPPED PPI enabled - just pend until TXSTOPPED event is set
|
|
* - disable ENDTX interrupt and manually trigger STOPTX, pend for TXSTOPPED
|
|
*/
|
|
static void wait_for_tx_stopped(const struct device *dev)
|
|
{
|
|
const struct uarte_nrfx_config *config = dev->config;
|
|
bool ppi_endtx = config->flags & UARTE_CFG_FLAG_PPI_ENDTX;
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
bool res;
|
|
|
|
if (!ppi_endtx) {
|
|
/* We assume here that it can be called from any context,
|
|
* including the one that uarte interrupt will not preempt.
|
|
* Disable endtx interrupt to ensure that it will not be triggered
|
|
* (if in lower priority context) and stop TX if necessary.
|
|
*/
|
|
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ENDTX_MASK);
|
|
NRFX_WAIT_FOR(is_tx_ready(dev), 1000, 1, res);
|
|
if (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)) {
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
|
|
}
|
|
}
|
|
|
|
NRFX_WAIT_FOR(nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED),
|
|
1000, 1, res);
|
|
|
|
if (!ppi_endtx) {
|
|
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ENDTX_MASK);
|
|
}
|
|
}
|
|
|
|
|
|
static int uarte_nrfx_pm_action(const struct device *dev,
|
|
enum pm_device_action action)
|
|
{
|
|
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
|
|
#if defined(UARTE_ANY_ASYNC) || defined(UARTE_INTERRUPT_DRIVEN)
|
|
struct uarte_nrfx_data *data = dev->data;
|
|
#endif
|
|
const struct uarte_nrfx_config *cfg = dev->config;
|
|
int ret;
|
|
|
|
switch (action) {
|
|
case PM_DEVICE_ACTION_RESUME:
|
|
if (cfg->flags & UARTE_CFG_FLAG_GPIO_MGMT) {
|
|
ret = pinctrl_apply_state(cfg->pcfg,
|
|
PINCTRL_STATE_DEFAULT);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
nrf_uarte_enable(uarte);
|
|
|
|
#ifdef UARTE_ANY_ASYNC
|
|
if (data->async) {
|
|
if (HW_RX_COUNTING_ENABLED(data)) {
|
|
nrfx_timer_enable(&cfg->timer);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (!cfg->disable_rx) {
|
|
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
|
|
#ifdef UARTE_INTERRUPT_DRIVEN
|
|
if (data->int_driven &&
|
|
data->int_driven->rx_irq_enabled) {
|
|
nrf_uarte_int_enable(uarte,
|
|
NRF_UARTE_INT_ENDRX_MASK);
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
case PM_DEVICE_ACTION_SUSPEND:
|
|
/* Disabling UART requires stopping RX, but stop RX event is
|
|
* only sent after each RX if async UART API is used.
|
|
*/
|
|
#ifdef UARTE_ANY_ASYNC
|
|
if (data->async) {
|
|
/* Entering inactive state requires device to be no
|
|
* active asynchronous calls.
|
|
*/
|
|
__ASSERT_NO_MSG(!data->async->rx_enabled);
|
|
__ASSERT_NO_MSG(!data->async->tx_size);
|
|
|
|
}
|
|
#endif
|
|
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED)) {
|
|
#ifdef UARTE_INTERRUPT_DRIVEN
|
|
if (data->int_driven) {
|
|
data->int_driven->rx_irq_enabled =
|
|
nrf_uarte_int_enable_check(uarte,
|
|
NRF_UARTE_INT_ENDRX_MASK);
|
|
if (data->int_driven->rx_irq_enabled) {
|
|
nrf_uarte_int_disable(uarte,
|
|
NRF_UARTE_INT_ENDRX_MASK);
|
|
}
|
|
}
|
|
#endif
|
|
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
|
|
while (!nrf_uarte_event_check(uarte,
|
|
NRF_UARTE_EVENT_RXTO) &&
|
|
!nrf_uarte_event_check(uarte,
|
|
NRF_UARTE_EVENT_ERROR)) {
|
|
/* Busy wait for event to register */
|
|
Z_SPIN_DELAY(2);
|
|
}
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXTO);
|
|
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
|
|
}
|
|
|
|
wait_for_tx_stopped(dev);
|
|
uart_disable(dev);
|
|
|
|
if (cfg->flags & UARTE_CFG_FLAG_GPIO_MGMT) {
|
|
ret = pinctrl_apply_state(cfg->pcfg,
|
|
PINCTRL_STATE_SLEEP);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM_DEVICE */
|
|
|
|
#define UARTE(idx) DT_NODELABEL(uart##idx)
|
|
#define UARTE_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(UARTE(idx), prop)
|
|
#define UARTE_PROP(idx, prop) DT_PROP(UARTE(idx), prop)
|
|
|
|
#define UARTE_IRQ_CONFIGURE(idx, isr_handler) \
|
|
do { \
|
|
IRQ_CONNECT(DT_IRQN(UARTE(idx)), DT_IRQ(UARTE(idx), priority), \
|
|
isr_handler, DEVICE_DT_GET(UARTE(idx)), 0); \
|
|
irq_enable(DT_IRQN(UARTE(idx))); \
|
|
} while (false)
|
|
|
|
/* Low power mode is used when disable_rx is not defined or in async mode if
|
|
* kconfig option is enabled.
|
|
*/
|
|
#define USE_LOW_POWER(idx) \
|
|
((!UARTE_PROP(idx, disable_rx) && \
|
|
COND_CODE_1(CONFIG_UART_##idx##_ASYNC, \
|
|
(!IS_ENABLED(CONFIG_UART_##idx##_NRF_ASYNC_LOW_POWER)), \
|
|
(1))) ? 0 : UARTE_CFG_FLAG_LOW_POWER)
|
|
|
|
#define UARTE_DISABLE_RX_INIT(node_id) \
|
|
.disable_rx = DT_PROP(node_id, disable_rx)
|
|
|
|
#define UART_NRF_UARTE_DEVICE(idx) \
|
|
NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(UARTE(idx)); \
|
|
UARTE_INT_DRIVEN(idx); \
|
|
UARTE_ASYNC(idx); \
|
|
PINCTRL_DT_DEFINE(UARTE(idx)); \
|
|
static uint8_t uarte##idx##_char_out UARTE_MEMORY_SECTION(idx); \
|
|
static uint8_t uarte##idx##_rx_data UARTE_MEMORY_SECTION(idx); \
|
|
static struct uarte_nrfx_data uarte_##idx##_data = { \
|
|
UARTE_CONFIG(idx), \
|
|
IF_ENABLED(CONFIG_UART_##idx##_ASYNC, \
|
|
(.async = &uarte##idx##_async,)) \
|
|
IF_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN, \
|
|
(.int_driven = &uarte##idx##_int_driven,)) \
|
|
}; \
|
|
static const struct uarte_nrfx_config uarte_##idx##z_config = { \
|
|
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(UARTE(idx)), \
|
|
.uarte_regs = _CONCAT(NRF_UARTE, idx), \
|
|
.flags = \
|
|
(IS_ENABLED(CONFIG_UART_##idx##_GPIO_MANAGEMENT) ? \
|
|
UARTE_CFG_FLAG_GPIO_MGMT : 0) | \
|
|
(IS_ENABLED(CONFIG_UART_##idx##_ENHANCED_POLL_OUT) ? \
|
|
UARTE_CFG_FLAG_PPI_ENDTX : 0) | \
|
|
USE_LOW_POWER(idx), \
|
|
UARTE_DISABLE_RX_INIT(UARTE(idx)), \
|
|
IF_ENABLED(CONFIG_UART_##idx##_NRF_HW_ASYNC, \
|
|
(.timer = NRFX_TIMER_INSTANCE( \
|
|
CONFIG_UART_##idx##_NRF_HW_ASYNC_TIMER),)) \
|
|
}; \
|
|
static int uarte_##idx##_init(const struct device *dev) \
|
|
{ \
|
|
COND_CODE_1(CONFIG_UART_##idx##_ASYNC, \
|
|
(UARTE_IRQ_CONFIGURE(idx, uarte_nrfx_isr_async);), \
|
|
(UARTE_IRQ_CONFIGURE(idx, uarte_nrfx_isr_int);)) \
|
|
return uarte_instance_init( \
|
|
dev, \
|
|
IS_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN)); \
|
|
} \
|
|
\
|
|
PM_DEVICE_DT_DEFINE(UARTE(idx), uarte_nrfx_pm_action); \
|
|
\
|
|
DEVICE_DT_DEFINE(UARTE(idx), \
|
|
uarte_##idx##_init, \
|
|
PM_DEVICE_DT_GET(UARTE(idx)), \
|
|
&uarte_##idx##_data, \
|
|
&uarte_##idx##z_config, \
|
|
PRE_KERNEL_1, \
|
|
CONFIG_SERIAL_INIT_PRIORITY, \
|
|
&uart_nrfx_uarte_driver_api)
|
|
|
|
#define UARTE_CONFIG(idx) \
|
|
.char_out = &uarte##idx##_char_out, \
|
|
.rx_data = &uarte##idx##_rx_data, \
|
|
.uart_config = { \
|
|
.baudrate = UARTE_PROP(idx, current_speed), \
|
|
.data_bits = UART_CFG_DATA_BITS_8, \
|
|
.stop_bits = UART_CFG_STOP_BITS_1, \
|
|
.parity = IS_ENABLED(CONFIG_UART_##idx##_NRF_PARITY_BIT) \
|
|
? UART_CFG_PARITY_EVEN \
|
|
: UART_CFG_PARITY_NONE, \
|
|
.flow_ctrl = UARTE_PROP(idx, hw_flow_control) \
|
|
? UART_CFG_FLOW_CTRL_RTS_CTS \
|
|
: UART_CFG_FLOW_CTRL_NONE, \
|
|
}
|
|
|
|
#define UARTE_ASYNC(idx) \
|
|
IF_ENABLED(CONFIG_UART_##idx##_ASYNC, ( \
|
|
static uint8_t \
|
|
uarte##idx##_tx_cache[CONFIG_UART_ASYNC_TX_CACHE_SIZE] \
|
|
UARTE_MEMORY_SECTION(idx); \
|
|
struct uarte_async_cb uarte##idx##_async = { \
|
|
.tx_cache = uarte##idx##_tx_cache, \
|
|
.hw_rx_counting = \
|
|
IS_ENABLED(CONFIG_UART_##idx##_NRF_HW_ASYNC), \
|
|
}))
|
|
|
|
#define UARTE_INT_DRIVEN(idx) \
|
|
IF_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN, \
|
|
(static uint8_t uarte##idx##_tx_buffer \
|
|
[MIN(CONFIG_UART_##idx##_NRF_TX_BUFFER_SIZE, \
|
|
BIT_MASK(UARTE##idx##_EASYDMA_MAXCNT_SIZE))] \
|
|
UARTE_MEMORY_SECTION(idx); \
|
|
static struct uarte_nrfx_int_driven \
|
|
uarte##idx##_int_driven = { \
|
|
.tx_buffer = uarte##idx##_tx_buffer, \
|
|
.tx_buff_size = sizeof(uarte##idx##_tx_buffer),\
|
|
};))
|
|
|
|
#define UARTE_MEMORY_SECTION(idx) \
|
|
COND_CODE_1(UARTE_HAS_PROP(idx, memory_regions), \
|
|
(__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \
|
|
DT_PHANDLE(UARTE(idx), memory_regions)))))), \
|
|
())
|
|
|
|
#ifdef CONFIG_HAS_HW_NRF_UARTE0
|
|
UART_NRF_UARTE_DEVICE(0);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAS_HW_NRF_UARTE1
|
|
UART_NRF_UARTE_DEVICE(1);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAS_HW_NRF_UARTE2
|
|
UART_NRF_UARTE_DEVICE(2);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAS_HW_NRF_UARTE3
|
|
UART_NRF_UARTE_DEVICE(3);
|
|
#endif
|