zephyr/drivers/counter/counter_ll_stm32_rtc.c
Krisna Resi 7dd7175336 drivers: rtc: Fix RTC alarm when using both CONFIG_COUNTER and CONFIG_PM
It is found that when we use CONFIG_COUNTER and CONFIG_PM concurrently,
the RTC alarm callback can be used only once (in some cases, it just
won't work at all, e.g., using CONFIG_BT). By set the DBP bit on PWR
control register 1 via LL_PWR_EnableBkUpAccess function to temporarily
disable write protection every time we assign RTC alarm, we can register
alarm callback correctly. Tested on Nucleo WB55RG.

Fixes: #68673
Signed-off-by: Krisna Resi <krisna_resi@ymail.com>
2024-03-15 09:33:14 +00:00

716 lines
19 KiB
C

/*
* Copyright (c) 2018 Workaround GmbH
* Copyright (c) 2018 Allterco Robotics
* Copyright (c) 2018 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*
* Source file for the STM32 RTC driver
*
*/
#define DT_DRV_COMPAT st_stm32_rtc
#include <time.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <stm32_ll_exti.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_rtc.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/sys/timeutil.h>
#include <zephyr/pm/device.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include "stm32_hsem.h"
LOG_MODULE_REGISTER(counter_rtc_stm32, CONFIG_COUNTER_LOG_LEVEL);
/* Seconds from 1970-01-01T00:00:00 to 2000-01-01T00:00:00 */
#define T_TIME_OFFSET 946684800
#if defined(CONFIG_SOC_SERIES_STM32L4X)
#define RTC_EXTI_LINE LL_EXTI_LINE_18
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \
|| defined(CONFIG_SOC_SERIES_STM32G0X)
#define RTC_EXTI_LINE LL_EXTI_LINE_19
#elif defined(CONFIG_SOC_SERIES_STM32F4X) \
|| defined(CONFIG_SOC_SERIES_STM32F0X) \
|| defined(CONFIG_SOC_SERIES_STM32F1X) \
|| defined(CONFIG_SOC_SERIES_STM32F2X) \
|| defined(CONFIG_SOC_SERIES_STM32F3X) \
|| defined(CONFIG_SOC_SERIES_STM32F7X) \
|| defined(CONFIG_SOC_SERIES_STM32WBX) \
|| defined(CONFIG_SOC_SERIES_STM32G4X) \
|| defined(CONFIG_SOC_SERIES_STM32L0X) \
|| defined(CONFIG_SOC_SERIES_STM32L1X) \
|| defined(CONFIG_SOC_SERIES_STM32L5X) \
|| defined(CONFIG_SOC_SERIES_STM32H7X) \
|| defined(CONFIG_SOC_SERIES_STM32H5X) \
|| defined(CONFIG_SOC_SERIES_STM32WLX)
#define RTC_EXTI_LINE LL_EXTI_LINE_17
#endif
#if defined(CONFIG_SOC_SERIES_STM32F1X)
#define COUNTER_NO_DATE
#endif
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI
/* LSI */
#define RTCCLK_FREQ STM32_LSI_FREQ
#else
/* LSE */
#define RTCCLK_FREQ STM32_LSE_FREQ
#endif /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI */
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
#define RTC_ASYNCPRE BIT_MASK(7)
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
/* Get the highest possible clock for the subsecond register */
#define RTC_ASYNCPRE 1
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else /* CONFIG_SOC_SERIES_STM32F1X */
#define RTC_ASYNCPRE (RTCCLK_FREQ - 1)
#endif /* CONFIG_SOC_SERIES_STM32F1X */
/* Adjust the second sync prescaler to get 1Hz on ck_spre */
#define RTC_SYNCPRE ((RTCCLK_FREQ / (1 + RTC_ASYNCPRE)) - 1)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
typedef uint32_t tick_t;
#else
typedef uint64_t tick_t;
#endif
struct rtc_stm32_config {
struct counter_config_info counter_info;
LL_RTC_InitTypeDef ll_rtc_config;
const struct stm32_pclken *pclken;
};
struct rtc_stm32_data {
counter_alarm_callback_t callback;
uint32_t ticks;
void *user_data;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
bool irq_on_late;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
};
static inline ErrorStatus ll_func_init_alarm(RTC_TypeDef *rtc, uint32_t format,
LL_RTC_AlarmTypeDef *alarmStruct)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
return LL_RTC_ALARM_Init(rtc, format, alarmStruct);
#else
return LL_RTC_ALMA_Init(rtc, format, alarmStruct);
#endif
}
static inline void ll_func_clear_alarm_flag(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_ClearFlag_ALR(rtc);
#else
LL_RTC_ClearFlag_ALRA(rtc);
#endif
}
static inline uint32_t ll_func_is_active_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
return LL_RTC_IsActiveFlag_ALR(rtc);
#else
return LL_RTC_IsActiveFlag_ALRA(rtc);
#endif
}
static inline void ll_func_enable_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_EnableIT_ALR(rtc);
#else
LL_RTC_EnableIT_ALRA(rtc);
#endif
}
static inline void ll_func_disable_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_DisableIT_ALR(rtc);
#else
LL_RTC_DisableIT_ALRA(rtc);
#endif
}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static inline uint32_t ll_func_isenabled_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
return LL_RTC_IsEnabledIT_ALR(rtc);
#else
return LL_RTC_IsEnabledIT_ALRA(rtc);
#endif
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
static inline void ll_func_enable_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
ARG_UNUSED(rtc);
#else
LL_RTC_ALMA_Enable(rtc);
#endif
}
static inline void ll_func_disable_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
ARG_UNUSED(rtc);
#else
LL_RTC_ALMA_Disable(rtc);
#endif
}
static void rtc_stm32_irq_config(const struct device *dev);
static int rtc_stm32_start(const struct device *dev)
{
#if defined(CONFIG_SOC_SERIES_STM32WBAX)
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
#else
ARG_UNUSED(dev);
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
LL_RCC_EnableRTC();
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#endif
return 0;
}
static int rtc_stm32_stop(const struct device *dev)
{
#if defined(CONFIG_SOC_SERIES_STM32WBAX)
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
#else
ARG_UNUSED(dev);
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
LL_RCC_DisableRTC();
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#endif
return 0;
}
#if !defined(COUNTER_NO_DATE)
tick_t rtc_stm32_read(const struct device *dev)
{
struct tm now = { 0 };
time_t ts;
uint32_t rtc_date, rtc_time;
tick_t ticks;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
uint32_t rtc_subseconds;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
ARG_UNUSED(dev);
/* Enable Backup access */
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || \
defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_EnableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
/* Read time and date registers. Make sure value of the previous register
* hasn't been changed while reading the next one.
*/
do {
rtc_date = LL_RTC_DATE_Get(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
do {
rtc_time = LL_RTC_TIME_Get(RTC);
rtc_subseconds = LL_RTC_TIME_GetSubSecond(RTC);
} while (rtc_time != LL_RTC_TIME_Get(RTC));
#else /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
rtc_time = LL_RTC_TIME_Get(RTC);
#endif
} while (rtc_date != LL_RTC_DATE_Get(RTC));
/* Convert calendar datetime to UNIX timestamp */
/* RTC start time: 1st, Jan, 2000 */
/* time_t start: 1st, Jan, 1970 */
now.tm_year = 100 +
__LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_YEAR(rtc_date));
/* tm_mon allowed values are 0-11 */
now.tm_mon = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MONTH(rtc_date)) - 1;
now.tm_mday = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_DAY(rtc_date));
now.tm_hour = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_HOUR(rtc_time));
now.tm_min = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MINUTE(rtc_time));
now.tm_sec = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_SECOND(rtc_time));
ts = timeutil_timegm(&now);
/* Return number of seconds since RTC init */
ts -= T_TIME_OFFSET;
__ASSERT(sizeof(time_t) == 8, "unexpected time_t definition");
ticks = ts * counter_get_frequency(dev);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* The RTC counts up, except for the subsecond register which counts
* down starting from the sync prescaler value. Add already counted
* ticks.
*/
ticks += RTC_SYNCPRE - rtc_subseconds;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
return ticks;
}
#else /* defined(COUNTER_NO_DATE) */
tick_t rtc_stm32_read(const struct device *dev)
{
uint32_t rtc_time, ticks;
ARG_UNUSED(dev);
/* Enable Backup access */
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || \
defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_EnableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
rtc_time = LL_RTC_TIME_Get(RTC);
ticks = rtc_time;
return ticks;
}
#endif /* !defined(COUNTER_NO_DATE) */
static int rtc_stm32_get_value(const struct device *dev, uint32_t *ticks)
{
*ticks = (uint32_t)rtc_stm32_read(dev);
return 0;
}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static int rtc_stm32_get_value_64(const struct device *dev, uint64_t *ticks)
{
*ticks = rtc_stm32_read(dev);
return 0;
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static void rtc_stm32_set_int_pending(void)
{
NVIC_SetPendingIRQ(DT_INST_IRQN(0));
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
static int rtc_stm32_set_alarm(const struct device *dev, uint8_t chan_id,
const struct counter_alarm_cfg *alarm_cfg)
{
#if !defined(COUNTER_NO_DATE)
struct tm alarm_tm;
time_t alarm_val_s;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
uint32_t alarm_val_ss;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
uint32_t remain;
#endif
LL_RTC_AlarmTypeDef rtc_alarm;
struct rtc_stm32_data *data = dev->data;
tick_t now = rtc_stm32_read(dev);
tick_t ticks = alarm_cfg->ticks;
if (data->callback != NULL) {
LOG_DBG("Alarm busy\n");
return -EBUSY;
}
data->callback = alarm_cfg->callback;
data->user_data = alarm_cfg->user_data;
#if !defined(COUNTER_NO_DATE)
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) {
/* Add +1 in order to compensate the partially started tick.
* Alarm will expire between requested ticks and ticks+1.
* In case only 1 tick is requested, it will avoid
* that tick+1 event occurs before alarm setting is finished.
*/
ticks += now + 1;
alarm_val_s = (time_t)(ticks / counter_get_frequency(dev)) + T_TIME_OFFSET;
} else {
alarm_val_s = (time_t)(ticks / counter_get_frequency(dev));
}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
alarm_val_ss = ticks % counter_get_frequency(dev);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) {
remain = ticks + now + 1;
} else {
remain = ticks;
}
/* In F1X, an interrupt occurs when the counter expires,
* not when the counter matches, so set -1
*/
remain--;
#endif
#if !defined(COUNTER_NO_DATE)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
LOG_DBG("Set Alarm: %d\n", ticks);
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
LOG_DBG("Set Alarm: %llu\n", ticks);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
gmtime_r(&alarm_val_s, &alarm_tm);
/* Apply ALARM_A */
rtc_alarm.AlarmTime.TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24;
rtc_alarm.AlarmTime.Hours = alarm_tm.tm_hour;
rtc_alarm.AlarmTime.Minutes = alarm_tm.tm_min;
rtc_alarm.AlarmTime.Seconds = alarm_tm.tm_sec;
rtc_alarm.AlarmMask = LL_RTC_ALMA_MASK_NONE;
rtc_alarm.AlarmDateWeekDaySel = LL_RTC_ALMA_DATEWEEKDAYSEL_DATE;
rtc_alarm.AlarmDateWeekDay = alarm_tm.tm_mday;
#else
rtc_alarm.AlarmTime.Hours = remain / 3600;
remain -= rtc_alarm.AlarmTime.Hours * 3600;
rtc_alarm.AlarmTime.Minutes = remain / 60;
remain -= rtc_alarm.AlarmTime.Minutes * 60;
rtc_alarm.AlarmTime.Seconds = remain;
#endif
LL_RTC_DisableWriteProtection(RTC);
ll_func_disable_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
if (ll_func_init_alarm(RTC, LL_RTC_FORMAT_BIN, &rtc_alarm) != SUCCESS) {
return -EIO;
}
LL_RTC_DisableWriteProtection(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* Care about all bits of the subsecond register */
LL_RTC_ALMA_SetSubSecondMask(RTC, 0xF);
LL_RTC_ALMA_SetSubSecond(RTC, RTC_SYNCPRE - alarm_val_ss);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
ll_func_enable_alarm(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_enable_interrupt_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* The reference manual says:
* "Each change of the RTC_CR register is taken into account after
* 1 to 2 RTCCLK clock cycles due to clock synchronization."
* It means we need at least two cycles after programming the CR
* register. It is confirmed experimentally.
*
* It should happen only if one tick alarm is requested and a tick
* occurs while processing the function. Trigger the irq manually in
* this case.
*/
now = rtc_stm32_read(dev);
if ((ticks - now < 2) || (now > ticks)) {
data->irq_on_late = 1;
rtc_stm32_set_int_pending();
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
return 0;
}
static int rtc_stm32_cancel_alarm(const struct device *dev, uint8_t chan_id)
{
struct rtc_stm32_data *data = dev->data;
LL_RTC_DisableWriteProtection(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_disable_interrupt_alarm(RTC);
ll_func_disable_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
data->callback = NULL;
return 0;
}
static uint32_t rtc_stm32_get_pending_int(const struct device *dev)
{
return ll_func_is_active_alarm(RTC) != 0;
}
static uint32_t rtc_stm32_get_top_value(const struct device *dev)
{
const struct counter_config_info *info = dev->config;
return info->max_top_value;
}
static int rtc_stm32_set_top_value(const struct device *dev,
const struct counter_top_cfg *cfg)
{
const struct counter_config_info *info = dev->config;
if ((cfg->ticks != info->max_top_value) ||
!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) {
return -ENOTSUP;
} else {
return 0;
}
}
void rtc_stm32_isr(const struct device *dev)
{
struct rtc_stm32_data *data = dev->data;
counter_alarm_callback_t alarm_callback = data->callback;
uint32_t now = rtc_stm32_read(dev);
if (ll_func_is_active_alarm(RTC) != 0
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
|| (data->irq_on_late && ll_func_isenabled_interrupt_alarm(RTC))
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
) {
LL_RTC_DisableWriteProtection(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_disable_interrupt_alarm(RTC);
ll_func_disable_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
data->irq_on_late = 0;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
if (alarm_callback != NULL) {
data->callback = NULL;
alarm_callback(dev, 0, now, data->user_data);
}
}
#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4)
LL_C2_EXTI_ClearFlag_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \
|| defined(CONFIG_SOC_SERIES_STM32G0X) \
|| defined(CONFIG_SOC_SERIES_STM32L5X) \
|| defined(CONFIG_SOC_SERIES_STM32H5X)
LL_EXTI_ClearRisingFlag_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX)
/* in STM32U5 family RTC is not connected to EXTI */
#else
LL_EXTI_ClearFlag_0_31(RTC_EXTI_LINE);
#endif
}
static int rtc_stm32_init(const struct device *dev)
{
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
struct rtc_stm32_data *data = dev->data;
data->callback = NULL;
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
/* Enable Backup access */
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || \
defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_EnableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
/* Enable RTC clock source */
if (clock_control_configure(clk,
(clock_control_subsys_t) &cfg->pclken[1],
NULL) != 0) {
LOG_ERR("clock configure failed\n");
return -EIO;
}
#if !defined(CONFIG_SOC_SERIES_STM32WBAX)
LL_RCC_EnableRTC();
#endif
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#if !defined(CONFIG_COUNTER_RTC_STM32_SAVE_VALUE_BETWEEN_RESETS)
if (LL_RTC_DeInit(RTC) != SUCCESS) {
return -EIO;
}
#endif
if (LL_RTC_Init(RTC, ((LL_RTC_InitTypeDef *)
&cfg->ll_rtc_config)) != SUCCESS) {
return -EIO;
}
#ifdef RTC_CR_BYPSHAD
LL_RTC_DisableWriteProtection(RTC);
LL_RTC_EnableShadowRegBypass(RTC);
LL_RTC_EnableWriteProtection(RTC);
#endif /* RTC_CR_BYPSHAD */
#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4)
LL_C2_EXTI_EnableIT_0_31(RTC_EXTI_LINE);
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX)
/* in STM32U5 family RTC is not connected to EXTI */
#else
LL_EXTI_EnableIT_0_31(RTC_EXTI_LINE);
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE);
#endif
rtc_stm32_irq_config(dev);
return 0;
}
static struct rtc_stm32_data rtc_data;
#if DT_INST_NUM_CLOCKS(0) == 1
#warning STM32 RTC needs a kernel source clock. Please define it in dts file
static const struct stm32_pclken rtc_clk[] = {
STM32_CLOCK_INFO(0, DT_DRV_INST(0)),
/* Use Kconfig to configure source clocks fields (Deprecated) */
/* Fortunately, values are consistent across enabled series */
#ifdef CONFIG_COUNTER_RTC_STM32_CLOCK_LSE
{.bus = STM32_SRC_LSE, .enr = RTC_SEL(1)}
#else
{.bus = STM32_SRC_LSI, .enr = RTC_SEL(2)}
#endif
};
#else
static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0);
#endif
static const struct rtc_stm32_config rtc_config = {
.counter_info = {
.max_top_value = UINT32_MAX,
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* freq = 1Hz for not subsec based driver */
.freq = RTCCLK_FREQ / ((RTC_ASYNCPRE + 1) * (RTC_SYNCPRE + 1)),
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.freq = RTCCLK_FREQ / (RTC_ASYNCPRE + 1),
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.flags = COUNTER_CONFIG_INFO_COUNT_UP,
.channels = 1,
},
.ll_rtc_config = {
.AsynchPrescaler = RTC_ASYNCPRE,
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
.HourFormat = LL_RTC_HOURFORMAT_24HOUR,
.SynchPrescaler = RTC_SYNCPRE,
#else /* CONFIG_SOC_SERIES_STM32F1X */
.OutPutSource = LL_RTC_CALIB_OUTPUT_NONE,
#endif /* CONFIG_SOC_SERIES_STM32F1X */
},
.pclken = rtc_clk,
};
#ifdef CONFIG_PM_DEVICE
static int rtc_stm32_pm_action(const struct device *dev,
enum pm_device_action action)
{
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
break;
case PM_DEVICE_ACTION_SUSPEND:
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
static const struct counter_driver_api rtc_stm32_driver_api = {
.start = rtc_stm32_start,
.stop = rtc_stm32_stop,
.get_value = rtc_stm32_get_value,
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
.get_value_64 = rtc_stm32_get_value_64,
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.set_alarm = rtc_stm32_set_alarm,
.cancel_alarm = rtc_stm32_cancel_alarm,
.set_top_value = rtc_stm32_set_top_value,
.get_pending_int = rtc_stm32_get_pending_int,
.get_top_value = rtc_stm32_get_top_value,
};
PM_DEVICE_DT_INST_DEFINE(0, rtc_stm32_pm_action);
DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, PM_DEVICE_DT_INST_GET(0),
&rtc_data, &rtc_config, PRE_KERNEL_1,
CONFIG_COUNTER_INIT_PRIORITY, &rtc_stm32_driver_api);
static void rtc_stm32_irq_config(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
rtc_stm32_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
}