zephyr/drivers/fuel_gauge/sbs_gauge/sbs_gauge.c
Roman Studenikin 260fc89643 drivers: use DT_INST_PROP over DT_INST_PROP_OR if possible
It might happens that DT(_INST)_PROP_OR is used with boolean properties.
For instance:

	.single_wire = DT_INST_PROP_OR(index, single_wire, false),	\
	.tx_rx_swap = DT_INST_PROP_OR(index, tx_rx_swap, false),	\

This is not required as boolean properties are generated with false
value when not present, so the _OR macro extension is superflous
and the above code can be replaced by:

	.single_wire = DT_INST_PROP(index, single_wire),		\
	.tx_rx_swap = DT_INST_PROP(index, tx_rx_swap),			\

Signed-off-by: Roman Studenikin <srv@meta.com>
2024-01-30 00:26:58 +00:00

338 lines
10 KiB
C

/*
* Copyright (c) 2022 Leica Geosystems AG
*
* Copyright 2022 Google LLC
* Copyright 2023 Microsoft Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT sbs_sbs_gauge_new_api
#include "sbs_gauge.h"
#include <stdbool.h>
#include <stdint.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/fuel_gauge.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/util.h>
LOG_MODULE_REGISTER(sbs_gauge);
static int sbs_cmd_reg_read(const struct device *dev, uint8_t reg_addr, uint16_t *val)
{
const struct sbs_gauge_config *cfg;
uint8_t i2c_data[2];
int status;
cfg = dev->config;
status = i2c_burst_read_dt(&cfg->i2c, reg_addr, i2c_data, ARRAY_SIZE(i2c_data));
if (status < 0) {
LOG_ERR("Unable to read register");
return status;
}
*val = sys_get_le16(i2c_data);
return 0;
}
static int sbs_cmd_reg_write(const struct device *dev, uint8_t reg_addr, uint16_t val)
{
const struct sbs_gauge_config *config = dev->config;
uint8_t buf[2];
sys_put_le16(val, buf);
return i2c_burst_write_dt(&config->i2c, reg_addr, buf, sizeof(buf));
}
static int sbs_cmd_buffer_read(const struct device *dev, uint8_t reg_addr, char *buffer,
const uint8_t buffer_size)
{
const struct sbs_gauge_config *cfg;
int status;
cfg = dev->config;
status = i2c_burst_read_dt(&cfg->i2c, reg_addr, buffer, buffer_size);
if (status < 0) {
LOG_ERR("Unable to read register");
return status;
}
return 0;
}
static int sbs_gauge_get_prop(const struct device *dev, fuel_gauge_prop_t prop,
union fuel_gauge_prop_val *val)
{
int rc = 0;
uint16_t tmp_val = 0;
switch (prop) {
case FUEL_GAUGE_AVG_CURRENT:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_AVG_CURRENT, &tmp_val);
val->avg_current = tmp_val * 1000;
break;
case FUEL_GAUGE_CYCLE_COUNT:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_CYCLE_COUNT, &tmp_val);
val->cycle_count = tmp_val;
break;
case FUEL_GAUGE_CURRENT:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_CURRENT, &tmp_val);
val->current = tmp_val * 1000;
break;
case FUEL_GAUGE_FULL_CHARGE_CAPACITY:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_FULL_CAPACITY, &tmp_val);
val->full_charge_capacity = tmp_val * 1000;
break;
case FUEL_GAUGE_REMAINING_CAPACITY:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_REM_CAPACITY, &tmp_val);
val->remaining_capacity = tmp_val * 1000;
break;
case FUEL_GAUGE_RUNTIME_TO_EMPTY:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_RUNTIME2EMPTY, &tmp_val);
val->runtime_to_empty = tmp_val;
break;
case FUEL_GAUGE_RUNTIME_TO_FULL:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_AVG_TIME2FULL, &tmp_val);
val->runtime_to_full = tmp_val;
break;
case FUEL_GAUGE_SBS_MFR_ACCESS:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_MANUFACTURER_ACCESS, &tmp_val);
val->sbs_mfr_access_word = tmp_val;
break;
case FUEL_GAUGE_ABSOLUTE_STATE_OF_CHARGE:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_ASOC, &tmp_val);
val->absolute_state_of_charge = tmp_val;
break;
case FUEL_GAUGE_RELATIVE_STATE_OF_CHARGE:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_RSOC, &tmp_val);
val->relative_state_of_charge = tmp_val;
break;
case FUEL_GAUGE_TEMPERATURE:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_TEMP, &tmp_val);
val->temperature = tmp_val;
break;
case FUEL_GAUGE_VOLTAGE:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_VOLTAGE, &tmp_val);
val->voltage = tmp_val * 1000;
break;
case FUEL_GAUGE_SBS_MODE:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_BATTERY_MODE, &tmp_val);
val->sbs_mode = tmp_val;
break;
case FUEL_GAUGE_CHARGE_CURRENT:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_CHG_CURRENT, &tmp_val);
val->chg_current = tmp_val * 1000;
break;
case FUEL_GAUGE_CHARGE_VOLTAGE:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_CHG_VOLTAGE, &tmp_val);
val->chg_voltage = tmp_val * 1000;
break;
case FUEL_GAUGE_STATUS:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_FLAGS, &tmp_val);
val->fg_status = tmp_val;
break;
case FUEL_GAUGE_DESIGN_CAPACITY:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_NOM_CAPACITY, &tmp_val);
val->design_cap = tmp_val;
break;
case FUEL_GAUGE_DESIGN_VOLTAGE:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_DESIGN_VOLTAGE, &tmp_val);
val->design_volt = tmp_val;
break;
case FUEL_GAUGE_SBS_ATRATE:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_AR, &tmp_val);
val->sbs_at_rate = tmp_val;
break;
case FUEL_GAUGE_SBS_ATRATE_TIME_TO_FULL:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_ARTTF, &tmp_val);
val->sbs_at_rate_time_to_full = tmp_val;
break;
case FUEL_GAUGE_SBS_ATRATE_TIME_TO_EMPTY:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_ARTTE, &tmp_val);
val->sbs_at_rate_time_to_empty = tmp_val;
break;
case FUEL_GAUGE_SBS_ATRATE_OK:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_AROK, &tmp_val);
val->sbs_at_rate_ok = tmp_val;
break;
case FUEL_GAUGE_SBS_REMAINING_CAPACITY_ALARM:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_REM_CAPACITY_ALARM, &tmp_val);
val->sbs_remaining_capacity_alarm = tmp_val;
break;
case FUEL_GAUGE_SBS_REMAINING_TIME_ALARM:
rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_REM_TIME_ALARM, &tmp_val);
val->sbs_remaining_time_alarm = tmp_val;
break;
default:
rc = -ENOTSUP;
}
return rc;
}
static int sbs_gauge_do_battery_cutoff(const struct device *dev)
{
int rc = -ENOTSUP;
const struct sbs_gauge_config *cfg = dev->config;
if (cfg->cutoff_cfg == NULL) {
return -ENOTSUP;
}
for (int i = 0; i < cfg->cutoff_cfg->payload_size; i++) {
rc = sbs_cmd_reg_write(dev, cfg->cutoff_cfg->reg, cfg->cutoff_cfg->payload[i]);
if (rc != 0) {
return rc;
}
}
return rc;
}
static int sbs_gauge_set_prop(const struct device *dev, fuel_gauge_prop_t prop,
union fuel_gauge_prop_val val)
{
int rc = 0;
uint16_t tmp_val = 0;
switch (prop) {
case FUEL_GAUGE_SBS_MFR_ACCESS:
rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_MANUFACTURER_ACCESS,
val.sbs_mfr_access_word);
val.sbs_mfr_access_word = tmp_val;
break;
case FUEL_GAUGE_SBS_REMAINING_CAPACITY_ALARM:
rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_REM_CAPACITY_ALARM,
val.sbs_remaining_capacity_alarm);
val.sbs_remaining_capacity_alarm = tmp_val;
break;
case FUEL_GAUGE_SBS_REMAINING_TIME_ALARM:
rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_REM_TIME_ALARM,
val.sbs_remaining_time_alarm);
val.sbs_remaining_time_alarm = tmp_val;
break;
case FUEL_GAUGE_SBS_MODE:
rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_BATTERY_MODE, val.sbs_mode);
val.sbs_mode = tmp_val;
break;
case FUEL_GAUGE_SBS_ATRATE:
rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_AR, val.sbs_at_rate);
val.sbs_at_rate = tmp_val;
break;
default:
rc = -ENOTSUP;
}
return rc;
}
static int sbs_gauge_get_buffer_prop(const struct device *dev,
fuel_gauge_prop_t prop_type, void *dst,
size_t dst_len)
{
int rc = 0;
switch (prop_type) {
case FUEL_GAUGE_MANUFACTURER_NAME:
if (dst_len == sizeof(struct sbs_gauge_manufacturer_name)) {
rc = sbs_cmd_buffer_read(dev, SBS_GAUGE_CMD_MANUFACTURER_NAME, (char *)dst,
dst_len);
} else {
rc = -EINVAL;
}
break;
case FUEL_GAUGE_DEVICE_NAME:
if (dst_len == sizeof(struct sbs_gauge_device_name)) {
rc = sbs_cmd_buffer_read(dev, SBS_GAUGE_CMD_DEVICE_NAME, (char *)dst,
dst_len);
} else {
rc = -EINVAL;
}
break;
case FUEL_GAUGE_DEVICE_CHEMISTRY:
if (dst_len == sizeof(struct sbs_gauge_device_chemistry)) {
rc = sbs_cmd_buffer_read(dev, SBS_GAUGE_CMD_DEVICE_CHEMISTRY, (char *)dst,
dst_len);
} else {
rc = -EINVAL;
}
break;
default:
rc = -ENOTSUP;
}
return rc;
}
/**
* @brief initialize the fuel gauge
*
* @return 0 for success
*/
static int sbs_gauge_init(const struct device *dev)
{
const struct sbs_gauge_config *cfg;
cfg = dev->config;
if (!device_is_ready(cfg->i2c.bus)) {
LOG_ERR("Bus device is not ready");
return -ENODEV;
}
return 0;
}
static const struct fuel_gauge_driver_api sbs_gauge_driver_api = {
.get_property = &sbs_gauge_get_prop,
.set_property = &sbs_gauge_set_prop,
.get_buffer_property = &sbs_gauge_get_buffer_prop,
.battery_cutoff = &sbs_gauge_do_battery_cutoff,
};
/* Concatenates index to battery config to create unique cfg variable name per instance. */
#define _SBS_GAUGE_BATT_CUTOFF_CFG_VAR_NAME(index) sbs_gauge_batt_cutoff_cfg_##index
/* Declare and define the battery config struct */
#define _SBS_GAUGE_CONFIG_DEFINE(index) \
static const struct sbs_gauge_battery_cutoff_config _SBS_GAUGE_BATT_CUTOFF_CFG_VAR_NAME( \
index) = { \
.reg = DT_INST_PROP(index, battery_cutoff_reg_addr), \
.payload = DT_INST_PROP(index, battery_cutoff_payload), \
.payload_size = DT_INST_PROP_LEN(index, battery_cutoff_payload), \
};
/* Conditionally defined battery config based on battery cutoff support */
#define SBS_GAUGE_CONFIG_DEFINE(index) \
COND_CODE_1(DT_INST_PROP(index, battery_cutoff_support), \
(_SBS_GAUGE_CONFIG_DEFINE(index)), (;))
/* Conditionally get the battery config variable name or NULL based on battery cutoff support */
#define SBS_GAUGE_GET_BATTERY_CONFIG_NAME(index) \
COND_CODE_1(DT_INST_PROP(index, battery_cutoff_support), \
(&_SBS_GAUGE_BATT_CUTOFF_CFG_VAR_NAME(index)), (NULL))
#define SBS_GAUGE_INIT(index) \
SBS_GAUGE_CONFIG_DEFINE(index); \
static const struct sbs_gauge_config sbs_gauge_config_##index = { \
.i2c = I2C_DT_SPEC_INST_GET(index), \
.cutoff_cfg = SBS_GAUGE_GET_BATTERY_CONFIG_NAME(index)}; \
\
DEVICE_DT_INST_DEFINE(index, &sbs_gauge_init, NULL, NULL, &sbs_gauge_config_##index, \
POST_KERNEL, CONFIG_FUEL_GAUGE_INIT_PRIORITY, \
&sbs_gauge_driver_api);
DT_INST_FOREACH_STATUS_OKAY(SBS_GAUGE_INIT)
#define CUTOFF_PAYLOAD_SIZE_ASSERT(inst) \
BUILD_ASSERT(DT_INST_PROP_LEN_OR(inst, battery_cutoff_payload, 0) <= \
SBS_GAUGE_CUTOFF_PAYLOAD_MAX_SIZE);
DT_INST_FOREACH_STATUS_OKAY(CUTOFF_PAYLOAD_SIZE_ASSERT)