zephyr/drivers/serial/uart_cmsdk_apb.c
Jason Mitchell 74d08d69b2 drivers: serial: cmsdk_apb: fix irq_rx_ready deviation
The docstring for uart_cmsdk_apb_irq_rx_ready says "@return 1 if an
interrupt is ready, 0 otherwise" but the function actually returns 2 on
success. This commit fixes this to conform with serial driver API.

Signed-off-by: Jason Mitchell <jmitchell@radicalsemiconductor.com>
2023-08-07 12:01:25 -04:00

802 lines
22 KiB
C

/*
* Copyright (c) 2021, Linaro Limited.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT arm_cmsdk_uart
/**
* @brief Driver for UART on ARM CMSDK APB UART.
*
* UART has two wires for RX and TX, and does not provide CTS or RTS.
*/
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control/arm_clock_control.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/init.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/linker/sections.h>
#include <zephyr/irq.h>
/* UART registers struct */
struct uart_cmsdk_apb {
/* offset: 0x000 (r/w) data register */
volatile uint32_t data;
/* offset: 0x004 (r/w) status register */
volatile uint32_t state;
/* offset: 0x008 (r/w) control register */
volatile uint32_t ctrl;
union {
/* offset: 0x00c (r/ ) interrupt status register */
volatile uint32_t intstatus;
/* offset: 0x00c ( /w) interrupt clear register */
volatile uint32_t intclear;
};
/* offset: 0x010 (r/w) baudrate divider register */
volatile uint32_t bauddiv;
};
/* UART Bits */
/* CTRL Register */
#define UART_TX_EN (1 << 0)
#define UART_RX_EN (1 << 1)
#define UART_TX_IN_EN (1 << 2)
#define UART_RX_IN_EN (1 << 3)
#define UART_TX_OV_EN (1 << 4)
#define UART_RX_OV_EN (1 << 5)
#define UART_HS_TM_TX (1 << 6)
/* STATE Register */
#define UART_TX_BF (1 << 0)
#define UART_RX_BF (1 << 1)
#define UART_TX_B_OV (1 << 2)
#define UART_RX_B_OV (1 << 3)
/* INTSTATUS Register */
#define UART_TX_IN (1 << 0)
#define UART_RX_IN (1 << 1)
#define UART_TX_OV_IN (1 << 2)
#define UART_RX_OV_IN (1 << 3)
struct uart_cmsdk_apb_config {
volatile struct uart_cmsdk_apb *uart;
uint32_t sys_clk_freq;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_config_func_t irq_config_func;
#endif
};
/* Device data structure */
struct uart_cmsdk_apb_dev_data {
uint32_t baud_rate; /* Baud rate */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t irq_cb;
void *irq_cb_data;
#endif
/* UART Clock control in Active State */
const struct arm_clock_control_t uart_cc_as;
/* UART Clock control in Sleep State */
const struct arm_clock_control_t uart_cc_ss;
/* UART Clock control in Deep Sleep State */
const struct arm_clock_control_t uart_cc_dss;
};
static const struct uart_driver_api uart_cmsdk_apb_driver_api;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_cmsdk_apb_isr(const struct device *dev);
#endif
/**
* @brief Set the baud rate
*
* This routine set the given baud rate for the UART.
*
* @param dev UART device struct
*/
static void baudrate_set(const struct device *dev)
{
const struct uart_cmsdk_apb_config * const dev_cfg = dev->config;
struct uart_cmsdk_apb_dev_data *const dev_data = dev->data;
/*
* If baudrate and/or sys_clk_freq are 0 the configuration remains
* unchanged. It can be useful in case that Zephyr it is run via
* a bootloader that brings up the serial and sets the baudrate.
*/
if ((dev_data->baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) {
/* calculate baud rate divisor */
dev_cfg->uart->bauddiv = (dev_cfg->sys_clk_freq / dev_data->baud_rate);
}
}
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0
*/
static int uart_cmsdk_apb_init(const struct device *dev)
{
const struct uart_cmsdk_apb_config * const dev_cfg = dev->config;
#ifdef CONFIG_CLOCK_CONTROL
/* Enable clock for subsystem */
const struct device *const clk = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR_BY_IDX(0, 1));
struct uart_cmsdk_apb_dev_data * const data = dev->data;
if (!device_is_ready(clk)) {
return -ENODEV;
}
#ifdef CONFIG_SOC_SERIES_BEETLE
clock_control_on(clk, (clock_control_subsys_t) &data->uart_cc_as);
clock_control_on(clk, (clock_control_subsys_t) &data->uart_cc_ss);
clock_control_on(clk, (clock_control_subsys_t) &data->uart_cc_dss);
#endif /* CONFIG_SOC_SERIES_BEETLE */
#endif /* CONFIG_CLOCK_CONTROL */
/* Set baud rate */
baudrate_set(dev);
/* Enable receiver and transmitter */
dev_cfg->uart->ctrl = UART_RX_EN | UART_TX_EN;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
dev_cfg->irq_config_func(dev);
#endif
return 0;
}
/**
* @brief Poll the device for input.
*
* @param dev UART device struct
* @param c Pointer to character
*
* @return 0 if a character arrived, -1 if the input buffer if empty.
*/
static int uart_cmsdk_apb_poll_in(const struct device *dev, unsigned char *c)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
/* If the receiver is not ready returns -1 */
if (!(dev_cfg->uart->state & UART_RX_BF)) {
return -1;
}
/* got a character */
*c = (unsigned char)dev_cfg->uart->data;
return 0;
}
/**
* @brief Output a character in polled mode.
*
* Checks if the transmitter is empty. If empty, a character is written to
* the data register.
*
* @param dev UART device struct
* @param c Character to send
*/
static void uart_cmsdk_apb_poll_out(const struct device *dev,
unsigned char c)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
/* Wait for transmitter to be ready */
while (dev_cfg->uart->state & UART_TX_BF) {
; /* Wait */
}
/* Send a character */
dev_cfg->uart->data = (uint32_t)c;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/**
* @brief Fill FIFO with data
*
* @param dev UART device struct
* @param tx_data Data to transmit
* @param len Number of bytes to send
*
* @return the number of characters that have been read
*/
static int uart_cmsdk_apb_fifo_fill(const struct device *dev,
const uint8_t *tx_data, int len)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
/*
* No hardware FIFO present. Only 1 byte
* to write if TX buffer is empty.
*/
if (len && !(dev_cfg->uart->state & UART_TX_BF)) {
/*
* Clear TX int. pending flag before pushing byte to "FIFO".
* If TX interrupt is enabled the UART_TX_IN bit will be set
* again automatically by the UART hardware machinery once
* the "FIFO" becomes empty again.
*/
dev_cfg->uart->intclear = UART_TX_IN;
dev_cfg->uart->data = *tx_data;
return 1;
}
return 0;
}
/**
* @brief Read data from FIFO
*
* @param dev UART device struct
* @param rx_data Pointer to data container
* @param size Container size in bytes
*
* @return the number of characters that have been read
*/
static int uart_cmsdk_apb_fifo_read(const struct device *dev,
uint8_t *rx_data, const int size)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
/*
* No hardware FIFO present. Only 1 byte
* to read if RX buffer is full.
*/
if (size && dev_cfg->uart->state & UART_RX_BF) {
/*
* Clear RX int. pending flag before popping byte from "FIFO".
* If RX interrupt is enabled the UART_RX_IN bit will be set
* again automatically by the UART hardware machinery once
* the "FIFO" becomes full again.
*/
dev_cfg->uart->intclear = UART_RX_IN;
*rx_data = (unsigned char)dev_cfg->uart->data;
return 1;
}
return 0;
}
/**
* @brief Enable TX interrupt
*
* @param dev UART device struct
*/
static void uart_cmsdk_apb_irq_tx_enable(const struct device *dev)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
unsigned int key;
dev_cfg->uart->ctrl |= UART_TX_IN_EN;
/* The expectation is that TX is a level interrupt, active for as
* long as TX buffer is empty. But in CMSDK UART it's an edge
* interrupt, firing on a state change of TX buffer from full to
* empty. So, we need to "prime" it here by calling ISR directly,
* to get interrupt processing going, as there is no previous
* full state to allow a transition from full to empty buffer
* that will trigger a TX interrupt.
*/
key = irq_lock();
uart_cmsdk_apb_isr(dev);
irq_unlock(key);
}
/**
* @brief Disable TX interrupt
*
* @param dev UART device struct
*/
static void uart_cmsdk_apb_irq_tx_disable(const struct device *dev)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
dev_cfg->uart->ctrl &= ~UART_TX_IN_EN;
/* Clear any pending TX interrupt after disabling it */
dev_cfg->uart->intclear = UART_TX_IN;
}
/**
* @brief Verify if Tx interrupt has been raised
*
* @param dev UART device struct
*
* @return 1 if an interrupt is ready, 0 otherwise
*/
static int uart_cmsdk_apb_irq_tx_ready(const struct device *dev)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
return !(dev_cfg->uart->state & UART_TX_BF);
}
/**
* @brief Enable RX interrupt
*
* @param dev UART device struct
*/
static void uart_cmsdk_apb_irq_rx_enable(const struct device *dev)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
dev_cfg->uart->ctrl |= UART_RX_IN_EN;
}
/**
* @brief Disable RX interrupt
*
* @param dev UART device struct
*/
static void uart_cmsdk_apb_irq_rx_disable(const struct device *dev)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
dev_cfg->uart->ctrl &= ~UART_RX_IN_EN;
/* Clear any pending RX interrupt after disabling it */
dev_cfg->uart->intclear = UART_RX_IN;
}
/**
* @brief Verify if Tx complete interrupt has been raised
*
* @param dev UART device struct
*
* @return 1 if an interrupt is ready, 0 otherwise
*/
static int uart_cmsdk_apb_irq_tx_complete(const struct device *dev)
{
return uart_cmsdk_apb_irq_tx_ready(dev);
}
/**
* @brief Verify if Rx interrupt has been raised
*
* @param dev UART device struct
*
* @return 1 if an interrupt is ready, 0 otherwise
*/
static int uart_cmsdk_apb_irq_rx_ready(const struct device *dev)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
return (dev_cfg->uart->state & UART_RX_BF) == UART_RX_BF;
}
/**
* @brief Enable error interrupt
*
* @param dev UART device struct
*/
static void uart_cmsdk_apb_irq_err_enable(const struct device *dev)
{
ARG_UNUSED(dev);
}
/**
* @brief Disable error interrupt
*
* @param dev UART device struct
*/
static void uart_cmsdk_apb_irq_err_disable(const struct device *dev)
{
ARG_UNUSED(dev);
}
/**
* @brief Verify if Tx or Rx interrupt is pending
*
* @param dev UART device struct
*
* @return 1 if Tx or Rx interrupt is pending, 0 otherwise
*/
static int uart_cmsdk_apb_irq_is_pending(const struct device *dev)
{
const struct uart_cmsdk_apb_config *dev_cfg = dev->config;
return (dev_cfg->uart->intstatus & (UART_RX_IN | UART_TX_IN));
}
/**
* @brief Update the interrupt status
*
* @param dev UART device struct
*
* @return always 1
*/
static int uart_cmsdk_apb_irq_update(const struct device *dev)
{
return 1;
}
/**
* @brief Set the callback function pointer for an Interrupt.
*
* @param dev UART device structure
* @param cb Callback function pointer.
*/
static void uart_cmsdk_apb_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_cmsdk_apb_dev_data *data = dev->data;
data->irq_cb = cb;
data->irq_cb_data = cb_data;
}
/**
* @brief Interrupt service routine.
*
* Calls the callback function, if exists.
*
* @param arg argument to interrupt service routine.
*/
void uart_cmsdk_apb_isr(const struct device *dev)
{
struct uart_cmsdk_apb_dev_data *data = dev->data;
/* Verify if the callback has been registered */
if (data->irq_cb) {
data->irq_cb(dev, data->irq_cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_driver_api uart_cmsdk_apb_driver_api = {
.poll_in = uart_cmsdk_apb_poll_in,
.poll_out = uart_cmsdk_apb_poll_out,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_cmsdk_apb_fifo_fill,
.fifo_read = uart_cmsdk_apb_fifo_read,
.irq_tx_enable = uart_cmsdk_apb_irq_tx_enable,
.irq_tx_disable = uart_cmsdk_apb_irq_tx_disable,
.irq_tx_ready = uart_cmsdk_apb_irq_tx_ready,
.irq_rx_enable = uart_cmsdk_apb_irq_rx_enable,
.irq_rx_disable = uart_cmsdk_apb_irq_rx_disable,
.irq_tx_complete = uart_cmsdk_apb_irq_tx_complete,
.irq_rx_ready = uart_cmsdk_apb_irq_rx_ready,
.irq_err_enable = uart_cmsdk_apb_irq_err_enable,
.irq_err_disable = uart_cmsdk_apb_irq_err_disable,
.irq_is_pending = uart_cmsdk_apb_irq_is_pending,
.irq_update = uart_cmsdk_apb_irq_update,
.irq_callback_set = uart_cmsdk_apb_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_cmsdk_apb_irq_config_func_0(const struct device *dev);
#endif
static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_0 = {
.uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(0),
.sys_clk_freq = DT_INST_PROP_BY_PHANDLE(0, clocks, clock_frequency),
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_cmsdk_apb_irq_config_func_0,
#endif
};
static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_0 = {
.baud_rate = DT_INST_PROP(0, current_speed),
.uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE,
.device = DT_INST_REG_ADDR(0),},
.uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP,
.device = DT_INST_REG_ADDR(0),},
.uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP,
.device = DT_INST_REG_ADDR(0),},
};
DEVICE_DT_INST_DEFINE(0,
&uart_cmsdk_apb_init,
NULL,
&uart_cmsdk_apb_dev_data_0,
&uart_cmsdk_apb_dev_cfg_0, PRE_KERNEL_1,
CONFIG_SERIAL_INIT_PRIORITY,
&uart_cmsdk_apb_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#if DT_NUM_IRQS(DT_DRV_INST(0)) == 1
static void uart_cmsdk_apb_irq_config_func_0(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(0),
0);
irq_enable(DT_INST_IRQN(0));
}
#else
static void uart_cmsdk_apb_irq_config_func_0(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, tx, irq),
DT_INST_IRQ_BY_NAME(0, tx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(0),
0);
irq_enable(DT_INST_IRQ_BY_NAME(0, tx, irq));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, rx, irq),
DT_INST_IRQ_BY_NAME(0, rx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(0),
0);
irq_enable(DT_INST_IRQ_BY_NAME(0, rx, irq));
}
#endif
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_cmsdk_apb_irq_config_func_1(const struct device *dev);
#endif
static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_1 = {
.uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(1),
.sys_clk_freq = DT_INST_PROP_BY_PHANDLE(1, clocks, clock_frequency),
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_cmsdk_apb_irq_config_func_1,
#endif
};
static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_1 = {
.baud_rate = DT_INST_PROP(1, current_speed),
.uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE,
.device = DT_INST_REG_ADDR(1),},
.uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP,
.device = DT_INST_REG_ADDR(1),},
.uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP,
.device = DT_INST_REG_ADDR(1),},
};
DEVICE_DT_INST_DEFINE(1,
&uart_cmsdk_apb_init,
NULL,
&uart_cmsdk_apb_dev_data_1,
&uart_cmsdk_apb_dev_cfg_1, PRE_KERNEL_1,
CONFIG_SERIAL_INIT_PRIORITY,
&uart_cmsdk_apb_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#if DT_NUM_IRQS(DT_DRV_INST(1)) == 1
static void uart_cmsdk_apb_irq_config_func_1(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(1),
DT_INST_IRQ(1, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(1),
0);
irq_enable(DT_INST_IRQN(1));
}
#else
static void uart_cmsdk_apb_irq_config_func_1(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, tx, irq),
DT_INST_IRQ_BY_NAME(1, tx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(1),
0);
irq_enable(DT_INST_IRQ_BY_NAME(1, tx, irq));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, rx, irq),
DT_INST_IRQ_BY_NAME(1, rx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(1),
0);
irq_enable(DT_INST_IRQ_BY_NAME(1, rx, irq));
}
#endif
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(2), okay)
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_cmsdk_apb_irq_config_func_2(const struct device *dev);
#endif
static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_2 = {
.uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(2),
.sys_clk_freq = DT_INST_PROP_BY_PHANDLE(2, clocks, clock_frequency),
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_cmsdk_apb_irq_config_func_2,
#endif
};
static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_2 = {
.baud_rate = DT_INST_PROP(2, current_speed),
.uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE,
.device = DT_INST_REG_ADDR(2),},
.uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP,
.device = DT_INST_REG_ADDR(2),},
.uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP,
.device = DT_INST_REG_ADDR(2),},
};
DEVICE_DT_INST_DEFINE(2,
&uart_cmsdk_apb_init,
NULL,
&uart_cmsdk_apb_dev_data_2,
&uart_cmsdk_apb_dev_cfg_2, PRE_KERNEL_1,
CONFIG_SERIAL_INIT_PRIORITY,
&uart_cmsdk_apb_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#if DT_NUM_IRQS(DT_DRV_INST(2)) == 1
static void uart_cmsdk_apb_irq_config_func_2(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(2),
DT_INST_IRQ_BY_NAME(2, priority, irq),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(2),
0);
irq_enable(DT_INST_IRQN(2));
}
#else
static void uart_cmsdk_apb_irq_config_func_2(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, tx, irq),
DT_INST_IRQ_BY_NAME(2, tx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(2),
0);
irq_enable(DT_INST_IRQ_BY_NAME(2, tx, irq));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, rx, irq),
DT_INST_IRQ_BY_NAME(2, rx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(2),
0);
irq_enable(DT_INST_IRQ_BY_NAME(2, rx, irq));
}
#endif
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(2), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(3), okay)
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_cmsdk_apb_irq_config_func_3(const struct device *dev);
#endif
static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_3 = {
.uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(3),
.sys_clk_freq = DT_INST_PROP_BY_PHANDLE(3, clocks, clock_frequency),
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_cmsdk_apb_irq_config_func_3,
#endif
};
static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_3 = {
.baud_rate = DT_INST_PROP(3, current_speed),
.uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE,
.device = DT_INST_REG_ADDR(3),},
.uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP,
.device = DT_INST_REG_ADDR(3),},
.uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP,
.device = DT_INST_REG_ADDR(3),},
};
DEVICE_DT_INST_DEFINE(3,
&uart_cmsdk_apb_init,
NULL,
&uart_cmsdk_apb_dev_data_3,
&uart_cmsdk_apb_dev_cfg_3, PRE_KERNEL_1,
CONFIG_SERIAL_INIT_PRIORITY,
&uart_cmsdk_apb_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#if DT_NUM_IRQS(DT_DRV_INST(3)) == 1
static void uart_cmsdk_apb_irq_config_func_3(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(3),
DT_INST_IRQ(3, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(3),
0);
irq_enable(DT_INST_IRQN(3));
}
#else
static void uart_cmsdk_apb_irq_config_func_3(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, tx, irq),
DT_INST_IRQ_BY_NAME(3, tx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(3),
0);
irq_enable(DT_INST_IRQ_BY_NAME(3, tx, irq));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, rx, irq),
DT_INST_IRQ_BY_NAME(3, rx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(3),
0);
irq_enable(DT_INST_IRQ_BY_NAME(3, rx, irq));
}
#endif
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(3), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(4), okay)
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_cmsdk_apb_irq_config_func_4(const struct device *dev);
#endif
static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_4 = {
.uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(4),
.sys_clk_freq = DT_INST_PROP_BY_PHANDLE(4, clocks, clock_frequency),
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_cmsdk_apb_irq_config_func_4,
#endif
};
static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_4 = {
.baud_rate = DT_INST_PROP(4, current_speed),
.uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE,
.device = DT_INST_REG_ADDR(4),},
.uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP,
.device = DT_INST_REG_ADDR(4),},
.uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP,
.device = DT_INST_REG_ADDR(4),},
};
DEVICE_DT_INST_DEFINE(4,
&uart_cmsdk_apb_init,
NULL,
&uart_cmsdk_apb_dev_data_4,
&uart_cmsdk_apb_dev_cfg_4, PRE_KERNEL_1,
CONFIG_SERIAL_INIT_PRIORITY,
&uart_cmsdk_apb_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#if DT_NUM_IRQS(DT_DRV_INST(4)) == 1
static void uart_cmsdk_apb_irq_config_func_4(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(4),
DT_INST_IRQ_BY_NAME(4, priority, irq),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(4),
0);
irq_enable(DT_INST_IRQN(4));
}
#else
static void uart_cmsdk_apb_irq_config_func_4(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(4, tx, irq),
DT_INST_IRQ_BY_NAME(4, tx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(4),
0);
irq_enable(DT_INST_IRQ_BY_NAME(4, tx, irq));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(4, rx, irq),
DT_INST_IRQ_BY_NAME(4, rx, priority),
uart_cmsdk_apb_isr,
DEVICE_DT_INST_GET(4),
0);
irq_enable(DT_INST_IRQ_BY_NAME(4, rx, irq));
}
#endif
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(4), okay) */