zephyr/drivers/sensor/lsm6dso/lsm6dso_shub.c
Anas Nashif 49b36ead95 drivers: add mising braces to single line if statements
Following zephyr's style guideline, all if statements, including single
line statements shall have braces.

Signed-off-by: Anas Nashif <anas.nashif@intel.com>
2022-07-06 11:00:45 -04:00

812 lines
19 KiB
C

/* ST Microelectronics LSM6DSO 6-axis IMU sensor driver
*
* Copyright (c) 2019 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*
* Datasheet:
* https://www.st.com/resource/en/datasheet/lsm6dso.pdf
*/
#define DT_DRV_COMPAT st_lsm6dso
#include <zephyr/device.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/logging/log.h>
#include "lsm6dso.h"
LOG_MODULE_DECLARE(LSM6DSO, CONFIG_SENSOR_LOG_LEVEL);
#define LSM6DSO_SHUB_DATA_OUT 0x02
#define LSM6DSO_SHUB_SLV0_ADDR 0x15
#define LSM6DSO_SHUB_SLV0_SUBADDR 0x16
#define LSM6DSO_SHUB_SLV0_CONFIG 0x17
#define LSM6DSO_SHUB_SLV1_ADDR 0x18
#define LSM6DSO_SHUB_SLV1_SUBADDR 0x19
#define LSM6DSO_SHUB_SLV1_CONFIG 0x1A
#define LSM6DSO_SHUB_SLV2_ADDR 0x1B
#define LSM6DSO_SHUB_SLV2_SUBADDR 0x1C
#define LSM6DSO_SHUB_SLV2_CONFIG 0x1D
#define LSM6DSO_SHUB_SLV3_ADDR 0x1E
#define LSM6DSO_SHUB_SLV3_SUBADDR 0x1F
#define LSM6DSO_SHUB_SLV3_CONFIG 0x20
#define LSM6DSO_SHUB_SLV0_DATAWRITE 0x21
#define LSM6DSO_SHUB_STATUS_MASTER 0x22
#define LSM6DSO_SHUB_STATUS_SLV0_NACK BIT(3)
#define LSM6DSO_SHUB_STATUS_ENDOP BIT(0)
#define LSM6DSO_SHUB_SLVX_WRITE 0x0
#define LSM6DSO_SHUB_SLVX_READ 0x1
static int lsm6dso_shub_write_slave_reg(const struct device *dev,
uint8_t slv_addr, uint8_t slv_reg,
uint8_t *value, uint16_t len);
static int lsm6dso_shub_read_slave_reg(const struct device *dev,
uint8_t slv_addr, uint8_t slv_reg,
uint8_t *value, uint16_t len);
static void lsm6dso_shub_enable(const struct device *dev, uint8_t enable);
/*
* LIS2MDL magn device specific part
*/
#ifdef CONFIG_LSM6DSO_EXT_LIS2MDL
#define LIS2MDL_CFG_REG_A 0x60
#define LIS2MDL_CFG_REG_B 0x61
#define LIS2MDL_CFG_REG_C 0x62
#define LIS2MDL_STATUS_REG 0x67
#define LIS2MDL_SW_RESET 0x20
#define LIS2MDL_ODR_10HZ 0x00
#define LIS2MDL_ODR_100HZ 0x0C
#define LIS2MDL_OFF_CANC 0x02
#define LIS2MDL_SENSITIVITY 1500
static int lsm6dso_lis2mdl_init(const struct device *dev, uint8_t i2c_addr)
{
struct lsm6dso_data *data = dev->data;
uint8_t mag_cfg[2];
data->magn_gain = LIS2MDL_SENSITIVITY;
/* sw reset device */
mag_cfg[0] = LIS2MDL_SW_RESET;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LIS2MDL_CFG_REG_A, mag_cfg, 1);
k_sleep(K_MSEC(10)); /* turn-on time in ms */
/* configure mag */
mag_cfg[0] = LIS2MDL_ODR_10HZ;
mag_cfg[1] = LIS2MDL_OFF_CANC;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LIS2MDL_CFG_REG_A, mag_cfg, 2);
return 0;
}
static const uint16_t lis2mdl_map[] = {10, 20, 50, 100};
static int lsm6dso_lis2mdl_odr_set(const struct device *dev,
uint8_t i2c_addr, uint16_t freq)
{
uint8_t odr, cfg;
for (odr = 0; odr < ARRAY_SIZE(lis2mdl_map); odr++) {
if (freq == lis2mdl_map[odr]) {
break;
}
}
if (odr == ARRAY_SIZE(lis2mdl_map)) {
LOG_DBG("shub: LIS2MDL freq val %d not supported.", freq);
return -ENOTSUP;
}
cfg = (odr << 2);
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LIS2MDL_CFG_REG_A, &cfg, 1);
lsm6dso_shub_enable(dev, 1);
return 0;
}
static int lsm6dso_lis2mdl_conf(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dso_lis2mdl_odr_set(dev, i2c_addr, val->val1);
default:
LOG_DBG("shub: LIS2MDL attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_LSM6DSO_EXT_LIS2MDL */
/*
* HTS221 humidity device specific part
*/
#ifdef CONFIG_LSM6DSO_EXT_HTS221
#define HTS221_AUTOINCREMENT BIT(7)
#define HTS221_REG_CTRL1 0x20
#define HTS221_ODR_1HZ 0x01
#define HTS221_BDU 0x04
#define HTS221_PD 0x80
#define HTS221_REG_CONV_START 0x30
static int lsmdso_hts221_read_conv_data(const struct device *dev,
uint8_t i2c_addr)
{
uint8_t buf[16], i;
struct hts221_data *ht = &data->hts221;
for (i = 0; i < sizeof(buf); i += 7) {
unsigned char len = MIN(7, sizeof(buf) - i);
if (lsm6dso_shub_read_slave_reg(data, i2c_addr,
(HTS221_REG_CONV_START + i) |
HTS221_AUTOINCREMENT,
&buf[i], len) < 0) {
LOG_DBG("shub: failed to read hts221 conv data");
return -EIO;
}
}
ht->y0 = buf[0] / 2;
ht->y1 = buf[1] / 2;
ht->x0 = sys_le16_to_cpu(buf[6] | (buf[7] << 8));
ht->x1 = sys_le16_to_cpu(buf[10] | (buf[11] << 8));
return 0;
}
static int lsm6dso_hts221_init(const struct device *dev, uint8_t i2c_addr)
{
uint8_t hum_cfg;
/* configure ODR and BDU */
hum_cfg = HTS221_ODR_1HZ | HTS221_BDU | HTS221_PD;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
HTS221_REG_CTRL1, &hum_cfg, 1);
return lsmdso_hts221_read_conv_data(data, i2c_addr);
}
static const uint16_t hts221_map[] = {0, 1, 7, 12};
static int lsm6dso_hts221_odr_set(const struct device *dev,
uint8_t i2c_addr, uint16_t freq)
{
uint8_t odr, cfg;
for (odr = 0; odr < ARRAY_SIZE(hts221_map); odr++) {
if (freq == hts221_map[odr]) {
break;
}
}
if (odr == ARRAY_SIZE(hts221_map)) {
LOG_DBG("shub: HTS221 freq val %d not supported.", freq);
return -ENOTSUP;
}
cfg = odr | HTS221_BDU | HTS221_PD;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
HTS221_REG_CTRL1, &cfg, 1);
lsm6dso_shub_enable(dev, 1);
return 0;
}
static int lsm6dso_hts221_conf(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dso_hts221_odr_set(data, i2c_addr, val->val1);
default:
LOG_DBG("shub: HTS221 attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_LSM6DSO_EXT_HTS221 */
/*
* LPS22HB baro/temp device specific part
*/
#ifdef CONFIG_LSM6DSO_EXT_LPS22HB
#define LPS22HB_CTRL_REG1 0x10
#define LPS22HB_CTRL_REG2 0x11
#define LPS22HB_SW_RESET 0x04
#define LPS22HB_ODR_10HZ 0x20
#define LPS22HB_LPF_EN 0x08
#define LPS22HB_BDU_EN 0x02
static int lsm6dso_lps22hb_init(const struct device *dev, uint8_t i2c_addr)
{
uint8_t baro_cfg[2];
/* sw reset device */
baro_cfg[0] = LPS22HB_SW_RESET;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LPS22HB_CTRL_REG2, baro_cfg, 1);
k_sleep(K_MSEC(1)); /* turn-on time in ms */
/* configure device */
baro_cfg[0] = LPS22HB_ODR_10HZ | LPS22HB_LPF_EN | LPS22HB_BDU_EN;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LPS22HB_CTRL_REG1, baro_cfg, 1);
return 0;
}
#endif /* CONFIG_LSM6DSO_EXT_LPS22HB */
/*
* LPS22HH baro/temp device specific part
*/
#ifdef CONFIG_LSM6DSO_EXT_LPS22HH
#define LPS22HH_CTRL_REG1 0x10
#define LPS22HH_CTRL_REG2 0x11
#define LPS22HH_SW_RESET 0x04
#define LPS22HH_IF_ADD_INC 0x10
#define LPS22HH_ODR_10HZ 0x20
#define LPS22HH_LPF_EN 0x08
#define LPS22HH_BDU_EN 0x02
static int lsm6dso_lps22hh_init(const struct device *dev, uint8_t i2c_addr)
{
uint8_t baro_cfg[2];
/* sw reset device */
baro_cfg[0] = LPS22HH_SW_RESET;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LPS22HH_CTRL_REG2, baro_cfg, 1);
k_sleep(K_MSEC(100)); /* turn-on time in ms */
/* configure device */
baro_cfg[0] = LPS22HH_IF_ADD_INC;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LPS22HH_CTRL_REG2, baro_cfg, 1);
baro_cfg[0] = LPS22HH_ODR_10HZ | LPS22HH_LPF_EN | LPS22HH_BDU_EN;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LPS22HH_CTRL_REG1, baro_cfg, 1);
return 0;
}
static const uint16_t lps22hh_map[] = {0, 1, 10, 25, 50, 75, 100, 200};
static int lsm6dso_lps22hh_odr_set(const struct device *dev,
uint8_t i2c_addr, uint16_t freq)
{
uint8_t odr, cfg;
for (odr = 0; odr < ARRAY_SIZE(lps22hh_map); odr++) {
if (freq == lps22hh_map[odr]) {
break;
}
}
if (odr == ARRAY_SIZE(lps22hh_map)) {
LOG_DBG("shub: LPS22HH freq val %d not supported.", freq);
return -ENOTSUP;
}
cfg = (odr << 4) | LPS22HH_LPF_EN | LPS22HH_BDU_EN;
lsm6dso_shub_write_slave_reg(dev, i2c_addr,
LPS22HH_CTRL_REG1, &cfg, 1);
lsm6dso_shub_enable(dev, 1);
return 0;
}
static int lsm6dso_lps22hh_conf(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dso_lps22hh_odr_set(dev, i2c_addr, val->val1);
default:
LOG_DBG("shub: LPS22HH attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_LSM6DSO_EXT_LPS22HH */
/* List of supported external sensors */
static struct lsm6dso_shub_slist {
enum sensor_channel type;
uint8_t i2c_addr[2];
uint8_t ext_i2c_addr;
uint8_t wai_addr;
uint8_t wai_val;
uint8_t out_data_addr;
uint8_t out_data_len;
uint8_t sh_out_reg;
int (*dev_init)(const struct device *dev, uint8_t i2c_addr);
int (*dev_conf)(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan, enum sensor_attribute attr,
const struct sensor_value *val);
} lsm6dso_shub_slist[] = {
#ifdef CONFIG_LSM6DSO_EXT_LIS2MDL
{
/* LIS2MDL */
.type = SENSOR_CHAN_MAGN_XYZ,
.i2c_addr = { 0x1E },
.wai_addr = 0x4F,
.wai_val = 0x40,
.out_data_addr = 0x68,
.out_data_len = 0x06,
.dev_init = (lsm6dso_lis2mdl_init),
.dev_conf = (lsm6dso_lis2mdl_conf),
},
#endif /* CONFIG_LSM6DSO_EXT_LIS2MDL */
#ifdef CONFIG_LSM6DSO_EXT_HTS221
{
/* HTS221 */
.type = SENSOR_CHAN_HUMIDITY,
.i2c_addr = { 0x5F },
.wai_addr = 0x0F,
.wai_val = 0xBC,
.out_data_addr = 0x28 | HTS221_AUTOINCREMENT,
.out_data_len = 0x02,
.dev_init = (lsm6dso_hts221_init),
.dev_conf = (lsm6dso_hts221_conf),
},
#endif /* CONFIG_LSM6DSO_EXT_HTS221 */
#ifdef CONFIG_LSM6DSO_EXT_LPS22HB
{
/* LPS22HB */
.type = SENSOR_CHAN_PRESS,
.i2c_addr = { 0x5C, 0x5D },
.wai_addr = 0x0F,
.wai_val = 0xB1,
.out_data_addr = 0x28,
.out_data_len = 0x05,
.dev_init = (lsm6dso_lps22hb_init),
},
#endif /* CONFIG_LSM6DSO_EXT_LPS22HB */
#ifdef CONFIG_LSM6DSO_EXT_LPS22HH
{
/* LPS22HH */
.type = SENSOR_CHAN_PRESS,
.i2c_addr = { 0x5C, 0x5D },
.wai_addr = 0x0F,
.wai_val = 0xB3,
.out_data_addr = 0x28,
.out_data_len = 0x05,
.dev_init = (lsm6dso_lps22hh_init),
.dev_conf = (lsm6dso_lps22hh_conf),
},
#endif /* CONFIG_LSM6DSO_EXT_LPS22HH */
};
static inline void lsm6dso_shub_wait_completed(stmdev_ctx_t *ctx)
{
lsm6dso_status_master_t status;
do {
k_msleep(1);
lsm6dso_sh_status_get(ctx, &status);
} while (status.sens_hub_endop == 0);
}
static inline void lsm6dso_shub_embedded_en(stmdev_ctx_t *ctx, bool on)
{
if (on) {
(void) lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
} else {
(void) lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
k_busy_wait(150);
}
static int lsm6dso_shub_read_embedded_regs(stmdev_ctx_t *ctx,
uint8_t reg_addr,
uint8_t *value, int len)
{
lsm6dso_shub_embedded_en(ctx, true);
if (lsm6dso_read_reg(ctx, reg_addr, value, len) < 0) {
LOG_DBG("shub: failed to read external reg: %02x", reg_addr);
lsm6dso_shub_embedded_en(ctx, false);
return -EIO;
}
lsm6dso_shub_embedded_en(ctx, false);
return 0;
}
static int lsm6dso_shub_write_embedded_regs(stmdev_ctx_t *ctx,
uint8_t reg_addr,
uint8_t *value, uint8_t len)
{
lsm6dso_shub_embedded_en(ctx, true);
if (lsm6dso_write_reg(ctx, reg_addr, value, len) < 0) {
LOG_DBG("shub: failed to write external reg: %02x", reg_addr);
lsm6dso_shub_embedded_en(ctx, false);
return -EIO;
}
lsm6dso_shub_embedded_en(ctx, false);
return 0;
}
static void lsm6dso_shub_enable(const struct device *dev, uint8_t enable)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dso_data *data = dev->data;
/* Enable Accel @26hz */
if (!data->accel_freq) {
uint8_t odr = (enable) ? 2 : 0;
if (lsm6dso_xl_data_rate_set(ctx, odr) < 0) {
LOG_DBG("shub: failed to set XL sampling rate");
return;
}
}
lsm6dso_shub_embedded_en(ctx, true);
if (lsm6dso_sh_master_set(ctx, enable) < 0) {
LOG_DBG("shub: failed to set master on");
lsm6dso_shub_embedded_en(ctx, false);
return;
}
lsm6dso_shub_embedded_en(ctx, false);
}
/* must be called with master on */
static int lsm6dso_shub_check_slv0_nack(stmdev_ctx_t *ctx)
{
uint8_t status;
if (lsm6dso_shub_read_embedded_regs(ctx, LSM6DSO_SHUB_STATUS_MASTER,
&status, 1) < 0) {
LOG_DBG("shub: error reading embedded reg");
return -EIO;
}
if (status & (LSM6DSO_SHUB_STATUS_SLV0_NACK)) {
LOG_DBG("shub: SLV0 nacked");
return -EIO;
}
return 0;
}
/*
* use SLV0 for generic read to slave device
*/
static int lsm6dso_shub_read_slave_reg(const struct device *dev,
uint8_t slv_addr, uint8_t slv_reg,
uint8_t *value, uint16_t len)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t slave[3];
slave[0] = (slv_addr << 1) | LSM6DSO_SHUB_SLVX_READ;
slave[1] = slv_reg;
slave[2] = (len & 0x7);
if (lsm6dso_shub_write_embedded_regs(ctx, LSM6DSO_SHUB_SLV0_ADDR,
slave, 3) < 0) {
LOG_DBG("shub: error writing embedded reg");
return -EIO;
}
/* turn SH on */
lsm6dso_shub_enable(dev, 1);
lsm6dso_shub_wait_completed(ctx);
/* read data from external slave */
lsm6dso_shub_embedded_en(ctx, true);
if (lsm6dso_read_reg(ctx, LSM6DSO_SHUB_DATA_OUT,
value, len) < 0) {
LOG_DBG("shub: error reading sensor data");
return -EIO;
}
lsm6dso_shub_embedded_en(ctx, false);
if (lsm6dso_shub_check_slv0_nack(ctx) < 0) {
lsm6dso_shub_enable(dev, 0);
return -EIO;
}
lsm6dso_shub_enable(dev, 0);
return 0;
}
/*
* use SLV0 to configure slave device
*/
static int lsm6dso_shub_write_slave_reg(const struct device *dev,
uint8_t slv_addr, uint8_t slv_reg,
uint8_t *value, uint16_t len)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t slv_cfg[3];
uint8_t cnt = 0U;
while (cnt < len) {
slv_cfg[0] = (slv_addr << 1) & ~LSM6DSO_SHUB_SLVX_READ;
slv_cfg[1] = slv_reg + cnt;
if (lsm6dso_shub_write_embedded_regs(ctx,
LSM6DSO_SHUB_SLV0_ADDR,
slv_cfg, 2) < 0) {
LOG_DBG("shub: error writing embedded reg");
return -EIO;
}
slv_cfg[0] = value[cnt];
if (lsm6dso_shub_write_embedded_regs(ctx,
LSM6DSO_SHUB_SLV0_DATAWRITE,
slv_cfg, 1) < 0) {
LOG_DBG("shub: error writing embedded reg");
return -EIO;
}
/* turn SH on */
lsm6dso_shub_enable(dev, 1);
lsm6dso_shub_wait_completed(ctx);
if (lsm6dso_shub_check_slv0_nack(ctx) < 0) {
lsm6dso_shub_enable(dev, 0);
return -EIO;
}
lsm6dso_shub_enable(dev, 0);
cnt++;
}
/* Put SLV0 in IDLE mode */
slv_cfg[0] = 0x7;
slv_cfg[1] = 0x0;
slv_cfg[2] = 0x0;
if (lsm6dso_shub_write_embedded_regs(ctx, LSM6DSO_SHUB_SLV0_ADDR,
slv_cfg, 3) < 0) {
LOG_DBG("shub: error writing embedded reg");
return -EIO;
}
return 0;
}
/*
* SLAVEs configurations:
*
* - SLAVE 0: used for configuring all slave devices
* - SLAVE 1: used as data read channel for external slave device #1
* - SLAVE 2: used as data read channel for external slave device #2
* - SLAVE 3: used for generic reads while data channel is enabled
*/
static int lsm6dso_shub_set_data_channel(const struct device *dev)
{
struct lsm6dso_data *data = dev->data;
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t n, i, slv_cfg[6];
struct lsm6dso_shub_slist *sp;
/* Set data channel for slave devices */
for (n = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dso_shub_slist[data->shub_ext[n]];
i = n * 3;
slv_cfg[i] = (sp->ext_i2c_addr << 1) | LSM6DSO_SHUB_SLVX_READ;
slv_cfg[i + 1] = sp->out_data_addr;
slv_cfg[i + 2] = sp->out_data_len;
}
if (lsm6dso_shub_write_embedded_regs(ctx,
LSM6DSO_SHUB_SLV1_ADDR,
slv_cfg, n*3) < 0) {
LOG_DBG("shub: error writing embedded reg");
return -EIO;
}
/* Configure the master */
lsm6dso_aux_sens_on_t aux = LSM6DSO_SLV_0_1_2;
if (lsm6dso_sh_slave_connected_set(ctx, aux) < 0) {
LOG_DBG("shub: error setting aux sensors");
return -EIO;
}
lsm6dso_write_once_t wo = LSM6DSO_ONLY_FIRST_CYCLE;
if (lsm6dso_sh_write_mode_set(ctx, wo) < 0) {
LOG_DBG("shub: error setting write once");
return -EIO;
}
/* turn SH on */
lsm6dso_shub_enable(dev, 1);
lsm6dso_shub_wait_completed(ctx);
return 0;
}
int lsm6dso_shub_get_idx(const struct device *dev, enum sensor_channel type)
{
uint8_t n;
struct lsm6dso_data *data = dev->data;
struct lsm6dso_shub_slist *sp;
for (n = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dso_shub_slist[data->shub_ext[n]];
if (sp->type == type) {
return n;
}
}
LOG_ERR("shub: dev %s type %d not supported", dev->name, type);
return -ENOTSUP;
}
int lsm6dso_shub_fetch_external_devs(const struct device *dev)
{
uint8_t n;
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dso_data *data = dev->data;
struct lsm6dso_shub_slist *sp;
/* read data from external slave */
lsm6dso_shub_embedded_en(ctx, true);
for (n = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dso_shub_slist[data->shub_ext[n]];
if (lsm6dso_read_reg(ctx, sp->sh_out_reg,
data->ext_data[n], sp->out_data_len) < 0) {
LOG_DBG("shub: failed to read sample");
lsm6dso_shub_embedded_en(ctx, false);
return -EIO;
}
}
lsm6dso_shub_embedded_en(ctx, false);
return 0;
}
int lsm6dso_shub_config(const struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
struct lsm6dso_data *data = dev->data;
struct lsm6dso_shub_slist *sp = NULL;
uint8_t n;
for (n = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dso_shub_slist[data->shub_ext[n]];
if (sp->type == chan) {
break;
}
}
if (n == data->num_ext_dev) {
LOG_DBG("shub: %s chan %d not supported", dev->name, chan);
return -ENOTSUP;
}
if (sp == NULL || sp->dev_conf == NULL) {
LOG_DBG("shub: chan not configurable");
return -ENOTSUP;
}
return sp->dev_conf(dev, sp->ext_i2c_addr, chan, attr, val);
}
int lsm6dso_shub_init(const struct device *dev)
{
struct lsm6dso_data *data = dev->data;
uint8_t i, n = 0, regn;
uint8_t chip_id;
struct lsm6dso_shub_slist *sp;
LOG_INF("shub: start sensorhub for %s", dev->name);
for (n = 0; n < ARRAY_SIZE(lsm6dso_shub_slist); n++) {
if (data->num_ext_dev >= LSM6DSO_SHUB_MAX_NUM_SLVS) {
break;
}
chip_id = 0;
sp = &lsm6dso_shub_slist[n];
/*
* The external sensor may have different I2C address.
* So, try them one by one until we read the correct
* chip ID.
*/
for (i = 0U; i < ARRAY_SIZE(sp->i2c_addr); i++) {
if (lsm6dso_shub_read_slave_reg(dev,
sp->i2c_addr[i],
sp->wai_addr,
&chip_id, 1) < 0) {
LOG_DBG("shub: failed reading chip id");
continue;
}
if (chip_id == sp->wai_val) {
break;
}
}
if (i >= ARRAY_SIZE(sp->i2c_addr)) {
LOG_DBG("shub: invalid chip id 0x%x", chip_id);
continue;
}
LOG_INF("shub: Ext Device Chip Id: %02x", chip_id);
sp->ext_i2c_addr = sp->i2c_addr[i];
data->shub_ext[data->num_ext_dev++] = n;
}
LOG_DBG("shub: dev %s - num_ext_dev %d", dev->name, data->num_ext_dev);
if (data->num_ext_dev == 0) {
LOG_ERR("shub: no slave devices found");
return -EINVAL;
}
/* init external devices */
for (n = 0, regn = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dso_shub_slist[data->shub_ext[n]];
sp->sh_out_reg = LSM6DSO_SHUB_DATA_OUT + regn;
regn += sp->out_data_len;
sp->dev_init(dev, sp->ext_i2c_addr);
}
lsm6dso_shub_set_data_channel(dev);
return 0;
}