zephyr/arch/arc/core/atomic.S
Anas Nashif 397d29db42 linker: move all linker headers to include/linker
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
2017-06-18 09:24:04 -05:00

423 lines
10 KiB
ArmAsm

/*
* Copyright (c) 2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief ARC atomic operations library
*
* This library provides routines to perform a number of atomic operations
* on a memory location: add, subtract, increment, decrement, bitwise OR,
* bitwise NOR, bitwise AND, bitwise NAND, set, clear and compare-and-swap.
*
* This requires the processor to support LLOCK and SCOND instructions,
* where they are not supported on ARC EM family processors.
*/
#include <toolchain.h>
#include <linker/sections.h>
/* exports */
GTEXT(atomic_set)
GTEXT(atomic_get)
GTEXT(atomic_add)
GTEXT(atomic_nand)
GTEXT(atomic_and)
GTEXT(atomic_or)
GTEXT(atomic_xor)
GTEXT(atomic_clear)
GTEXT(atomic_dec)
GTEXT(atomic_inc)
GTEXT(atomic_sub)
GTEXT(atomic_cas)
.section .TEXT._Atomic, "ax"
.balign 2
/**
*
* @brief Atomically clear a memory location
*
* This routine atomically clears the contents of <target> and returns the old
* value that was in <target>.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_clear
* (
* atomic_t *target /@ memory location to clear @/
* )
*/
SECTION_SUBSEC_FUNC(TEXT, atomic_clear_set, atomic_clear)
mov_s r1, 0
/* fall through into atomic_set */
/**
*
* @brief Atomically set a memory location
*
* This routine atomically sets the contents of <target> to <value> and returns
* the old value that was in <target>.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_set
* (
* atomic_t *target, /@ memory location to set @/
* atomic_val_t value /@ set with this value @/
* )
*
*/
SECTION_SUBSEC_FUNC(TEXT, atomic_clear_set, atomic_set)
ex r1, [r0] /* swap new value with old value */
j_s.d [blink]
mov_s r0, r1 /* return old value */
/**
*
* @brief Get the value of a shared memory atomically
*
* This routine atomically retrieves the value in *target
*
* atomic_val_t atomic_get
* (
* atomic_t *target /@ address of atom to be retrieved @/
* )
*
* RETURN: value read from address target.
*
*/
SECTION_FUNC(TEXT, atomic_get)
ld_s r0, [r0, 0]
j_s [blink]
/**
*
* @brief Atomically increment a memory location
*
* This routine atomically increments the value in <target>. The operation is
* done using unsigned integer arithmetic. Various CPU architectures may impose
* restrictions with regards to the alignment and cache attributes of the
* atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_inc
* (
* atomic_t *target, /@ memory location to increment @/
* )
*
*/
SECTION_SUBSEC_FUNC(TEXT, atomic_inc_add, atomic_inc)
mov_s r1, 1
/* fall through into atomic_add */
/**
*
* @brief Atomically add a value to a memory location
*
* This routine atomically adds the contents of <target> and <value>, placing
* the result in <target>. The operation is done using signed integer arithmetic.
* Various CPU architectures may impose restrictions with regards to the
* alignment and cache attributes of the atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_add
* (
* atomic_t *target, /@ memory location to add to @/
* atomic_val_t value /@ value to add @/
* )
*/
SECTION_SUBSEC_FUNC(TEXT, atomic_inc_add, atomic_add)
llock r2, [r0] /* load old value and mark exclusive access */
add_s r3, r1, r2
scond r3, [r0] /* try to store new value */
/* STATUS32.Z = 1 if successful */
bne_s atomic_add /* if store is not successful, retry */
j_s.d [blink]
mov_s r0, r2 /* return old value */
/**
*
* @brief Atomically decrement a memory location
*
* This routine atomically decrements the value in <target>. The operation is
* done using unsigned integer arithmetic. Various CPU architectures may impose
* restrictions with regards to the alignment and cache attributes of the
* atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_dec
* (
* atomic_t *target, /@ memory location to decrement @/
* )
*
*/
SECTION_SUBSEC_FUNC(TEXT, atomic_dec_sub, atomic_dec)
mov_s r1, 1
/* fall through into atomic_sub */
/**
*
* @brief Atomically subtract a value from a memory location
*
* This routine atomically subtracts <value> from the contents of <target>,
* placing the result in <target>. The operation is done using signed integer
* arithmetic. Various CPU architectures may impose restrictions with regards to
* the alignment and cache attributes of the atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_sub
* (
* atomic_t *target, /@ memory location to subtract from @/
* atomic_val_t value /@ value to subtract @/
* )
*
*/
SECTION_SUBSEC_FUNC(TEXT, atomic_dec_sub, atomic_sub)
llock r2, [r0] /* load old value and mark exclusive access */
sub r3, r2, r1
scond r3, [r0] /* try to store new value */
/* STATUS32.Z = 1 if successful */
bne_s atomic_sub /* if store is not successful, retry */
j_s.d [blink]
mov_s r0, r2 /* return old value */
/**
*
* @brief Atomically perform a bitwise NAND on a memory location
*
* This routine atomically performs a bitwise NAND operation of the contents of
* <target> and <value>, placing the result in <target>.
* Various CPU architectures may impose restrictions with regards to the
* alignment and cache attributes of the atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_nand
* (
* atomic_t *target, /@ memory location to NAND @/
* atomic_val_t value /@ NAND with this value @/
* )
*
*/
SECTION_FUNC(TEXT, atomic_nand)
llock r2, [r0] /* load old value and mark exclusive access */
and r3, r1, r2
not r3, r3
scond r3, [r0] /* try to store new value */
/* STATUS32.Z = 1 if successful */
bne_s atomic_nand /* if store is not successful, retry */
j_s.d [blink]
mov_s r0, r2 /* return old value */
/**
*
* @brief Atomically perform a bitwise AND on a memory location
*
* This routine atomically performs a bitwise AND operation of the contents of
* <target> and <value>, placing the result in <target>.
* Various CPU architectures may impose restrictions with regards to the
* alignment and cache attributes of the atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_and
* (
* atomic_t *target, /@ memory location to AND @/
* atomic_val_t value /@ AND with this value @/
* )
*
*/
SECTION_FUNC(TEXT, atomic_and)
llock r2, [r0] /* load old value and mark exclusive access */
and r3, r1, r2
scond r3, [r0] /* try to store new value */
/* STATUS32.Z = 1 if successful */
bne_s atomic_and /* if store is not successful, retry */
j_s.d [blink]
mov_s r0, r2 /* return old value */
/**
*
* @brief Atomically perform a bitwise OR on memory location
*
* This routine atomically performs a bitwise OR operation of the contents of
* <target> and <value>, placing the result in <target>.
* Various CPU architectures may impose restrictions with regards to the
* alignment and cache attributes of the atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_or
* (
* atomic_t *target, /@ memory location to OR @/
* atomic_val_t value /@ OR with this value @/
* )
*
*/
SECTION_FUNC(TEXT, atomic_or)
llock r2, [r0] /* load old value and mark exclusive access */
or r3, r1, r2
scond r3, [r0] /* try to store new value */
/* STATUS32.Z = 1 if successful */
bne_s atomic_or /* if store is not successful, retry */
j_s.d [blink]
mov_s r0, r2 /* return old value */
/**
*
* @brief Atomically perform a bitwise XOR on a memory location
*
* This routine atomically performs a bitwise XOR operation of the contents of
* <target> and <value>, placing the result in <target>.
* Various CPU architectures may impose restrictions with regards to the
* alignment and cache attributes of the atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return Contents of <target> before the atomic operation
*
* ERRNO: N/A
*
* atomic_val_t atomic_xor
* (
* atomic_t *target, /@ memory location to XOR @/
* atomic_val_t value /@ XOR with this value @/
* )
*
*/
SECTION_FUNC(TEXT, atomic_xor)
llock r2, [r0] /* load old value and mark exclusive access */
xor r3, r1, r2
scond r3, [r0] /* try to store new value */
/* STATUS32.Z = 1 if successful */
bne_s atomic_xor /* if store is not successful, retry */
j_s.d [blink]
mov_s r0, r2 /* return old value */
/**
*
* @brief Atomically compare-and-swap the contents of a memory location
*
* This routine performs an atomic compare-and-swap. testing that the contents of
* <target> contains <oldValue>, and if it does, setting the value of <target>
* to <newValue>. Various CPU architectures may impose restrictions with regards
* to the alignment and cache attributes of the atomic_t type.
*
* This routine can be used from both task and interrupt level.
*
* @return 1 if the swap is actually executed, 0 otherwise.
*
* ERRNO: N/A
*
* int atomic_cas
* (
* atomic_t *target, /@ memory location to compare-and-swap @/
* atomic_val_t oldValue, /@ compare to this value @/
* atomic_val_t newValue, /@ swap with this value @/
* )
*
*/
SECTION_FUNC(TEXT, atomic_cas)
llock r3, [r0] /* load old value and mark exclusive access */
cmp_s r1, r3
bne_s nanoAtomicCas_fail
scond r2, [r0] /* try to store new value */
/* STATUS32.Z = 1 if successful */
bne_s atomic_cas /* if store is not successful, retry */
j_s.d [blink]
mov_s r0, 1 /* return TRUE */
/* failed comparison */
nanoAtomicCas_fail:
scond r1, [r0] /* write old value to clear the access lock */
j_s.d [blink]
mov_s r0, 0 /* return FALSE */