cc334c7273
Convert code to use u{8,16,32,64}_t and s{8,16,32,64}_t instead of C99 integer types. This handles the remaining includes and kernel, plus touching up various points that we skipped because of include dependancies. We also convert the PRI printf formatters in the arch code over to normal formatters. Jira: ZEP-2051 Change-Id: Iecbb12601a3ee4ea936fd7ddea37788a645b08b0 Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
226 lines
6.1 KiB
C
226 lines
6.1 KiB
C
/* int_latency_bench.c - interrupt latency benchmark support */
|
|
|
|
/*
|
|
* Copyright (c) 2012-2015 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "toolchain.h"
|
|
#include "sections.h"
|
|
#include <zephyr/types.h> /* u32_t */
|
|
#include <limits.h> /* ULONG_MAX */
|
|
#include <misc/printk.h> /* printk */
|
|
#include <sys_clock.h>
|
|
#include <drivers/system_timer.h>
|
|
|
|
#define NB_CACHE_WARMING_DRY_RUN 7
|
|
|
|
/*
|
|
* Timestamp corresponding to when interrupt were turned off.
|
|
* A value of zero indicated interrupt are not currently locked.
|
|
*/
|
|
static u32_t int_locked_timestamp;
|
|
|
|
/* stats tracking the minimum and maximum time when interrupts were locked */
|
|
static u32_t int_locked_latency_min = ULONG_MAX;
|
|
static u32_t int_locked_latency_max;
|
|
|
|
/* overhead added to intLock/intUnlock by this latency benchmark */
|
|
static u32_t initial_start_delay;
|
|
static u32_t nesting_delay;
|
|
static u32_t stop_delay;
|
|
|
|
/* counter tracking intLock/intUnlock calls once interrupt are locked */
|
|
static u32_t int_lock_unlock_nest;
|
|
|
|
/* indicate if the interrupt latency benchamrk is ready to be used */
|
|
static u32_t int_latency_bench_ready;
|
|
|
|
/* min amount of time it takes from HW interrupt generation to 'C' handler */
|
|
u32_t _hw_irq_to_c_handler_latency = ULONG_MAX;
|
|
|
|
/**
|
|
*
|
|
* @brief Start tracking time spent with interrupts locked
|
|
*
|
|
* calls to lock interrupt can nest, so this routine can be called numerous
|
|
* times before interrupt are unlocked
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
void _int_latency_start(void)
|
|
{
|
|
/* when interrupts are not already locked, take time stamp */
|
|
if (!int_locked_timestamp && int_latency_bench_ready) {
|
|
int_locked_timestamp = k_cycle_get_32();
|
|
int_lock_unlock_nest = 0;
|
|
}
|
|
int_lock_unlock_nest++;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Stop accumulating time spent for when interrupts are locked
|
|
*
|
|
* This is only call once when the interrupt are being reenabled
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
void _int_latency_stop(void)
|
|
{
|
|
u32_t delta;
|
|
u32_t delayOverhead;
|
|
u32_t currentTime = k_cycle_get_32();
|
|
|
|
/* ensured intLatencyStart() was invoked first */
|
|
if (int_locked_timestamp) {
|
|
/*
|
|
* time spent with interrupt lock is:
|
|
* (current time - time when interrupt got disabled first) -
|
|
* (delay when invoking start + number nested calls to intLock *
|
|
* time it takes to call intLatencyStart + intLatencyStop)
|
|
*/
|
|
delta = (currentTime - int_locked_timestamp);
|
|
|
|
/*
|
|
* Substract overhead introduce by the int latency benchmark
|
|
* only if
|
|
* it is bigger than delta. It can be possible sometimes for
|
|
* delta to
|
|
* be smaller than the estimated overhead.
|
|
*/
|
|
delayOverhead =
|
|
(initial_start_delay +
|
|
((int_lock_unlock_nest - 1) * nesting_delay) + stop_delay);
|
|
if (delta >= delayOverhead)
|
|
delta -= delayOverhead;
|
|
|
|
/* update max */
|
|
if (delta > int_locked_latency_max)
|
|
int_locked_latency_max = delta;
|
|
|
|
/* update min */
|
|
if (delta < int_locked_latency_min)
|
|
int_locked_latency_min = delta;
|
|
|
|
/* interrupts are now enabled, get ready for next interrupt lock
|
|
*/
|
|
int_locked_timestamp = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize interrupt latency benchmark
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
void int_latency_init(void)
|
|
{
|
|
u32_t timeToReadTime;
|
|
u32_t cacheWarming = NB_CACHE_WARMING_DRY_RUN;
|
|
|
|
int_latency_bench_ready = 1;
|
|
|
|
/*
|
|
* measuring delay introduced by the interrupt latency benchmark few
|
|
* times to ensure we get the best possible values. The overhead of
|
|
* invoking the latency can changes runtime (i.e. cache hit or miss)
|
|
* but an estimated overhead is used to adjust Max interrupt latency.
|
|
* The overhead introduced by benchmark is composed of three values:
|
|
* initial_start_delay, nesting_delay, stop_delay.
|
|
*/
|
|
while (cacheWarming) {
|
|
/* measure how much time it takes to read time */
|
|
timeToReadTime = k_cycle_get_32();
|
|
timeToReadTime = k_cycle_get_32() - timeToReadTime;
|
|
|
|
/* measure time to call intLatencyStart() and intLatencyStop
|
|
* takes
|
|
*/
|
|
initial_start_delay = k_cycle_get_32();
|
|
_int_latency_start();
|
|
initial_start_delay =
|
|
k_cycle_get_32() - initial_start_delay - timeToReadTime;
|
|
|
|
nesting_delay = k_cycle_get_32();
|
|
_int_latency_start();
|
|
nesting_delay = k_cycle_get_32() - nesting_delay - timeToReadTime;
|
|
|
|
stop_delay = k_cycle_get_32();
|
|
_int_latency_stop();
|
|
stop_delay = k_cycle_get_32() - stop_delay - timeToReadTime;
|
|
|
|
/* re-initialize globals to default values */
|
|
int_locked_latency_min = ULONG_MAX;
|
|
int_locked_latency_max = 0;
|
|
|
|
cacheWarming--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Dumps interrupt latency values
|
|
*
|
|
* The interrupt latency value measures
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
void int_latency_show(void)
|
|
{
|
|
u32_t intHandlerLatency = 0;
|
|
|
|
if (!int_latency_bench_ready) {
|
|
printk("error: int_latency_init() has not been invoked\n");
|
|
return;
|
|
}
|
|
|
|
if (int_locked_latency_min != ULONG_MAX) {
|
|
if (_hw_irq_to_c_handler_latency == ULONG_MAX) {
|
|
intHandlerLatency = 0;
|
|
printk(" Min latency from hw interrupt up to 'C' int. "
|
|
"handler: "
|
|
"not measured\n");
|
|
} else {
|
|
intHandlerLatency = _hw_irq_to_c_handler_latency;
|
|
printk(" Min latency from hw interrupt up to 'C' int. "
|
|
"handler:"
|
|
" %d tcs = %d nsec\n",
|
|
intHandlerLatency,
|
|
SYS_CLOCK_HW_CYCLES_TO_NS(intHandlerLatency));
|
|
}
|
|
|
|
printk(" Max interrupt latency (includes hw int. to 'C' "
|
|
"handler):"
|
|
" %d tcs = %d nsec\n",
|
|
int_locked_latency_max + intHandlerLatency,
|
|
SYS_CLOCK_HW_CYCLES_TO_NS(int_locked_latency_max + intHandlerLatency));
|
|
|
|
printk(" Overhead substracted from Max int. latency:\n"
|
|
" for int. lock : %d tcs = %d nsec\n"
|
|
" each time int. lock nest: %d tcs = %d nsec\n"
|
|
" for int. unlocked : %d tcs = %d nsec\n",
|
|
initial_start_delay,
|
|
SYS_CLOCK_HW_CYCLES_TO_NS(initial_start_delay),
|
|
nesting_delay,
|
|
SYS_CLOCK_HW_CYCLES_TO_NS(nesting_delay),
|
|
stop_delay,
|
|
SYS_CLOCK_HW_CYCLES_TO_NS(stop_delay));
|
|
} else {
|
|
printk("interrupts were not locked and unlocked yet\n");
|
|
}
|
|
/*
|
|
* Lets start with new values so that one extra long path executed
|
|
* with interrupt disabled hide smaller paths with interrupt
|
|
* disabled.
|
|
*/
|
|
int_locked_latency_min = ULONG_MAX;
|
|
int_locked_latency_max = 0;
|
|
}
|