zephyr/subsys/net/ip/tcp.c
Jukka Rissanen 5ece8c26b5 net: tcp: Fixing the constness of TCP state debug string
Change-Id: I42a8271cf10efcd9ce67ef860a45fa54c0690387
Signed-off-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
2016-12-02 12:41:20 +02:00

840 lines
20 KiB
C

/** @file
* @brief TCP handler
*
* Handle TCP connections.
*/
/*
* Copyright (c) 2016 Intel Corporation
* Copyright 2011-2015 by Andrey Butok. FNET Community.
* Copyright 2008-2010 by Andrey Butok. Freescale Semiconductor, Inc.
* Copyright 2003 by Alexey Shervashidze, Andrey Butok. Motorola SPS.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(CONFIG_NET_DEBUG_TCP)
#define SYS_LOG_DOMAIN "net/tcp"
#define NET_DEBUG 1
#endif
#include <kernel.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <net/nbuf.h>
#include <net/net_ip.h>
#include <net/net_context.h>
#include <misc/byteorder.h>
#include "connection.h"
#include "net_private.h"
#include "ipv6.h"
#include "ipv4.h"
#include "tcp.h"
/*
* Each TCP connection needs to be tracked by net_context, so
* we need to allocate equal number of control structures here.
*/
#define NET_MAX_TCP_CONTEXT CONFIG_NET_MAX_CONTEXTS
static struct net_tcp tcp_context[NET_MAX_TCP_CONTEXT];
#define INIT_RETRY_MS 200
static struct k_sem tcp_lock;
struct tcp_segment {
uint32_t seq;
uint32_t ack;
uint16_t wnd;
uint8_t flags;
uint8_t optlen;
void *options;
struct sockaddr_ptr *src_addr;
const struct sockaddr *dst_addr;
};
#if NET_DEBUG > 0
static char upper_if_set(char chr, bool set)
{
if (set) {
return chr & ~0x20;
}
return chr | 0x20;
}
static void net_tcp_trace(char *str, struct net_buf *buf)
{
uint8_t flags = NET_TCP_FLAGS(buf);
NET_INFO("%s[TCP header]", str);
NET_INFO("|(SrcPort) %5u |(DestPort) %5u |",
ntohs(NET_TCP_BUF(buf)->src_port),
ntohs(NET_TCP_BUF(buf)->dst_port));
NET_INFO("|(Sequence number) 0x%010x |",
sys_get_be32(NET_TCP_BUF(buf)->seq));
NET_INFO("|(ACK number) 0x%010x |",
sys_get_be32(NET_TCP_BUF(buf)->ack));
NET_INFO("|(HL) %2u |(F) %c%c%c%c%c%c |(Window) %5u |",
(NET_TCP_BUF(buf)->offset >> 4) * 4,
upper_if_set('u', flags & NET_TCP_URG),
upper_if_set('a', flags & NET_TCP_ACK),
upper_if_set('p', flags & NET_TCP_PSH),
upper_if_set('r', flags & NET_TCP_RST),
upper_if_set('s', flags & NET_TCP_SYN),
upper_if_set('f', flags & NET_TCP_FIN),
sys_get_be16(NET_TCP_BUF(buf)->wnd));
NET_INFO("|(Checksum) 0x%04x |(Urgent) %5u |",
ntohs(NET_TCP_BUF(buf)->chksum),
sys_get_be16(NET_TCP_BUF(buf)->urg));
}
#else
#define net_tcp_trace(...)
#endif
static inline uint32_t init_isn(void)
{
/* Randomise initial seq number */
return sys_rand32_get();
}
static void tcp_retry_expired(struct k_timer *timer)
{
struct net_tcp *tcp = CONTAINER_OF(timer, struct net_tcp, retry_timer);
struct net_buf *buf;
/* Double the retry period for exponential backoff and resent
* the first (only the first!) unack'd packet.
*/
if (!sys_slist_is_empty(&tcp->sent_list)) {
tcp->retry_timeout_ms *= 2;
k_timer_start(&tcp->retry_timer, tcp->retry_timeout_ms, 0);
buf = CONTAINER_OF(sys_slist_peek_head(&tcp->sent_list),
struct net_buf, sent_list);
net_tcp_send_buf(buf);
}
}
struct net_tcp *net_tcp_alloc(struct net_context *context)
{
int i, key;
key = irq_lock();
for (i = 0; i < NET_MAX_TCP_CONTEXT; i++) {
if (!net_tcp_is_used(&tcp_context[i])) {
tcp_context[i].flags |= NET_TCP_IN_USE;
break;
}
}
irq_unlock(key);
if (i >= NET_MAX_TCP_CONTEXT) {
return NULL;
}
memset(&tcp_context[i], 0, sizeof(struct net_tcp));
tcp_context[i].flags = NET_TCP_IN_USE;
tcp_context[i].state = NET_TCP_CLOSED;
tcp_context[i].context = context;
tcp_context[i].send_seq = init_isn();
tcp_context[i].recv_max_ack = tcp_context[i].send_seq + 1u;
k_timer_init(&tcp_context[i].retry_timer, tcp_retry_expired, NULL);
return &tcp_context[i];
}
int net_tcp_release(struct net_tcp *tcp)
{
int key;
if (!PART_OF_ARRAY(tcp_context, tcp)) {
return -EINVAL;
}
if (tcp->state == NET_TCP_FIN_WAIT_1 ||
tcp->state == NET_TCP_FIN_WAIT_2 ||
tcp->state == NET_TCP_CLOSING ||
tcp->state == NET_TCP_TIME_WAIT) {
k_delayed_work_cancel(&tcp->fin_timer);
}
tcp->state = NET_TCP_CLOSED;
tcp->context = NULL;
key = irq_lock();
tcp->flags &= ~NET_TCP_IN_USE;
irq_unlock(key);
NET_DBG("Disposed of TCP connection state");
return 0;
}
static inline int net_tcp_add_options(struct net_buf *header, size_t len,
void *data)
{
uint8_t optlen;
memcpy(net_buf_add(header, len), data, len);
/* Set the length (this value is saved in 4-byte words format) */
if ((len & 0x3u) != 0u) {
optlen = (len & 0xfffCu) + 4u;
} else {
optlen = len;
}
return 0;
}
static int finalize_segment(struct net_context *context, struct net_buf *buf)
{
int ret = 0;
#if defined(CONFIG_NET_IPV4)
if (net_nbuf_family(buf) == AF_INET) {
net_ipv4_finalize(context, buf);
} else
#endif
#if defined(CONFIG_NET_IPV6)
if (net_nbuf_family(buf) == AF_INET6) {
net_ipv6_finalize(context, buf);
} else
#endif
{
ret = -EPROTOTYPE;
}
return ret;
}
static struct net_buf *prepare_segment(struct net_tcp *tcp,
struct tcp_segment *segment,
struct net_buf *buf)
{
int err;
struct net_buf *header, *tail = NULL;
struct net_tcp_hdr *tcphdr;
struct net_context *context = tcp->context;
uint16_t dst_port, src_port;
NET_ASSERT(context);
if (buf) {
/* TCP transmit data comes in with a pre-allocated
* nbuf at the head (so that net_context_send can find
* the context), and the data after. Rejigger so we
* can insert a TCP header cleanly
*/
tail = buf->frags;
buf->frags = NULL;
} else {
buf = net_nbuf_get_tx(context);
}
#if defined(CONFIG_NET_IPV4)
if (net_nbuf_family(buf) == AF_INET) {
net_ipv4_create(context, buf,
&(net_sin(segment->dst_addr)->sin_addr));
dst_port = net_sin(segment->dst_addr)->sin_port;
src_port = ((struct sockaddr_in_ptr *)&context->local)->
sin_port;
NET_IPV4_BUF(buf)->proto = IPPROTO_TCP;
} else
#endif
#if defined(CONFIG_NET_IPV6)
if (net_nbuf_family(buf) == AF_INET6) {
net_ipv6_create(tcp->context, buf,
&(net_sin6(segment->dst_addr)->sin6_addr));
dst_port = net_sin6(segment->dst_addr)->sin6_port;
src_port = ((struct sockaddr_in6_ptr *)&context->local)->
sin6_port;
NET_IPV6_BUF(buf)->nexthdr = IPPROTO_TCP;
} else
#endif
{
goto proto_err;
}
header = buf->frags;
tcphdr = (struct net_tcp_hdr *)net_buf_add(header, NET_TCPH_LEN);
if (segment->options && segment->optlen) {
net_tcp_add_options(header, segment->optlen, segment->options);
} else {
tcphdr->offset = NET_TCPH_LEN << 2;
}
tcphdr->src_port = src_port;
tcphdr->dst_port = dst_port;
tcphdr->seq[0] = segment->seq >> 24;
tcphdr->seq[1] = segment->seq >> 16;
tcphdr->seq[2] = segment->seq >> 8;
tcphdr->seq[3] = segment->seq;
tcphdr->ack[0] = segment->ack >> 24;
tcphdr->ack[1] = segment->ack >> 16;
tcphdr->ack[2] = segment->ack >> 8;
tcphdr->ack[3] = segment->ack;
tcphdr->flags = segment->flags;
tcphdr->wnd[0] = segment->wnd >> 8;
tcphdr->wnd[1] = segment->wnd;
tcphdr->urg[0] = 0;
tcphdr->urg[1] = 0;
if (tail) {
net_buf_frag_add(buf, tail);
}
err = finalize_segment(context, buf);
if (err) {
proto_err:
NET_DBG("Protocol family %d not supported",
net_nbuf_family(buf));
net_nbuf_unref(buf);
return NULL;
}
buf = net_nbuf_compact(buf);
net_tcp_trace("", buf);
return buf;
}
static inline uint32_t get_recv_wnd(struct net_tcp *tcp)
{
/* We don't queue received data inside the stack, we hand off
* packets to synchronous callbacks (who can queue if they
* want, but it's not our business). So the available window
* size is always the same. There are two configurables to
* check though.
*/
return min(NET_TCP_MAX_WIN, NET_TCP_BUF_MAX_LEN);
}
/* True if the (signed!) difference "seq1 - seq2" is positive and less
* than 2^29. That is, seq1 is "after" seq2.
*/
static inline bool seq_greater(uint32_t seq1, uint32_t seq2)
{
int d = (int)(seq1 - seq2);
return d > 0 && d < 0x20000000;
}
int net_tcp_prepare_segment(struct net_tcp *tcp, uint8_t flags,
void *options, size_t optlen,
const struct sockaddr *remote,
struct net_buf **send_buf)
{
uint32_t seq;
uint16_t wnd;
struct tcp_segment segment = { 0 };
seq = tcp->send_seq;
if (flags & NET_TCP_ACK) {
if (tcp->state == NET_TCP_FIN_WAIT_1) {
if (flags & NET_TCP_FIN) {
/* FIN is used here only to determine which
* state to go to next; it's not to be used
* in the sent segment.
*/
flags &= ~NET_TCP_FIN;
net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
} else {
net_tcp_change_state(tcp, NET_TCP_CLOSING);
}
} else if (tcp->state == NET_TCP_FIN_WAIT_2) {
net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
} else if (tcp->state == NET_TCP_CLOSE_WAIT) {
tcp->flags |= NET_TCP_IS_SHUTDOWN;
flags |= NET_TCP_FIN;
net_tcp_change_state(tcp, NET_TCP_LAST_ACK);
}
}
if (flags & NET_TCP_FIN) {
tcp->flags |= NET_TCP_FINAL_SENT;
seq++;
if (tcp->state == NET_TCP_ESTABLISHED ||
tcp->state == NET_TCP_SYN_RCVD) {
net_tcp_change_state(tcp, NET_TCP_FIN_WAIT_1);
}
}
if (flags & NET_TCP_SYN) {
seq++;
}
wnd = get_recv_wnd(tcp);
segment.src_addr = &tcp->context->local;
segment.dst_addr = remote;
segment.seq = tcp->send_seq;
segment.ack = tcp->send_ack;
segment.flags = flags;
segment.wnd = wnd;
segment.options = options;
segment.optlen = optlen;
*send_buf = prepare_segment(tcp, &segment, *send_buf);
tcp->send_seq = seq;
if (seq_greater(tcp->send_seq, tcp->recv_max_ack)) {
tcp->recv_max_ack = tcp->send_seq;
}
return 0;
}
static inline uint32_t get_size(uint32_t pos1, uint32_t pos2)
{
uint32_t size;
if (pos1 <= pos2) {
size = pos2 - pos1;
} else {
size = NET_TCP_MAX_SEQ - pos1 + pos2 + 1;
}
return size;
}
#if defined(CONFIG_NET_IPV4)
#ifndef NET_IP_MAX_PACKET
#define NET_IP_MAX_PACKET (10 * 1024)
#endif
#define NET_IP_MAX_OPTIONS 40 /* Maximum option field length */
static inline size_t ip_max_packet_len(struct in_addr *dest_ip)
{
ARG_UNUSED(dest_ip);
return (NET_IP_MAX_PACKET - (NET_IP_MAX_OPTIONS +
sizeof(struct net_ipv4_hdr))) & (~0x3LU);
}
#else /* CONFIG_NET_IPV4 */
#define ip_max_packet_len(...) 0
#endif /* CONFIG_NET_IPV4 */
static void net_tcp_set_syn_opt(struct net_tcp *tcp, uint8_t *options,
uint8_t *optionlen)
{
*optionlen = 0;
/* If 0, detect MSS based on interface MTU minus "TCP,IP header size"
*/
if (tcp->recv_mss == 0) {
sa_family_t family = net_context_get_family(tcp->context);
if (family == AF_INET) {
#if defined(CONFIG_NET_IPV4)
struct net_if *iface =
net_context_get_iface(tcp->context);
if (iface) {
/* MTU - [TCP,IP header size]. */
tcp->recv_mss = iface->mtu - 40;
}
#else
tcp->recv_mss = 0;
#endif /* CONFIG_NET_IPV4 */
}
#if defined(CONFIG_NET_IPV6)
else if (family == AF_INET6) {
tcp->recv_mss = 1280;
}
#endif /* CONFIG_NET_IPV6 */
else {
tcp->recv_mss = 0;
}
}
*((uint32_t *)(options + *optionlen)) =
htonl((uint32_t)(tcp->recv_mss | NET_TCP_MSS_HEADER));
*optionlen += NET_TCP_MSS_SIZE;
return;
}
int net_tcp_prepare_ack(struct net_tcp *tcp, const struct sockaddr *remote,
struct net_buf **buf)
{
uint8_t options[NET_TCP_MAX_OPT_SIZE];
uint8_t optionlen;
switch (tcp->state) {
case NET_TCP_SYN_RCVD:
/* In the SYN_RCVD state acknowledgment must be with the
* SYN flag.
*/
tcp->send_seq--;
net_tcp_set_syn_opt(tcp, options, &optionlen);
net_tcp_prepare_segment(tcp, NET_TCP_SYN | NET_TCP_ACK,
options, optionlen, remote, buf);
break;
case NET_TCP_FIN_WAIT_1:
case NET_TCP_LAST_ACK:
/* In the FIN_WAIT_1 and LAST_ACK states acknowledgment must
* be with the FIN flag.
*/
tcp->send_seq--;
net_tcp_prepare_segment(tcp, NET_TCP_FIN | NET_TCP_ACK,
0, 0, remote, buf);
break;
default:
net_tcp_prepare_segment(tcp, NET_TCP_ACK, 0, 0, remote, buf);
break;
}
return 0;
}
int net_tcp_prepare_reset(struct net_tcp *tcp,
const struct sockaddr *remote,
struct net_buf **buf)
{
struct tcp_segment segment = { 0 };
if ((net_context_get_state(tcp->context) != NET_CONTEXT_UNCONNECTED) &&
(tcp->state != NET_TCP_SYN_SENT) &&
(tcp->state != NET_TCP_TIME_WAIT)) {
if (tcp->state == NET_TCP_SYN_RCVD) {
/* Send the reset segment with acknowledgment. */
segment.seq = 0;
segment.ack = tcp->send_ack;
segment.flags = NET_TCP_RST | NET_TCP_ACK;
} else {
/* Send the reset segment without acknowledgment. */
segment.seq = tcp->recv_ack;
segment.ack = 0;
segment.flags = NET_TCP_RST;
}
segment.src_addr = &tcp->context->local;
segment.dst_addr = remote;
segment.wnd = 0;
segment.options = NULL;
segment.optlen = 0;
*buf = prepare_segment(tcp, &segment, NULL);
}
return 0;
}
const char * const net_tcp_state_str(enum net_tcp_state state)
{
#if NET_DEBUG
switch (state) {
case NET_TCP_CLOSED:
return "CLOSED";
case NET_TCP_LISTEN:
return "LISTEN";
case NET_TCP_SYN_SENT:
return "SYN_SENT";
case NET_TCP_SYN_RCVD:
return "SYN_RCVD";
case NET_TCP_ESTABLISHED:
return "ESTABLISHED";
case NET_TCP_CLOSE_WAIT:
return "CLOSE_WAIT";
case NET_TCP_LAST_ACK:
return "LAST_ACK";
case NET_TCP_FIN_WAIT_1:
return "FIN_WAIT_1";
case NET_TCP_FIN_WAIT_2:
return "FIN_WAIT_2";
case NET_TCP_TIME_WAIT:
return "TIME_WAIT";
case NET_TCP_CLOSING:
return "CLOSING";
}
#endif
return "";
}
int tcp_queue_data(struct net_context *context, struct net_buf *buf)
{
int ret, data_len;
struct net_conn *conn = (struct net_conn *)context->conn_handler;
data_len = net_buf_frags_len(buf);
/* Set PSH on all packets, our window is so small that there's
* no point in the remote side trying to finesse things and
* coalesce packets.
*/
ret = net_tcp_prepare_segment(context->tcp, NET_TCP_PSH | NET_TCP_ACK,
NULL, 0, &conn->remote_addr, &buf);
if (ret) {
return ret;
}
context->tcp->send_seq += data_len;
sys_slist_append(&context->tcp->sent_list, &buf->sent_list);
net_buf_ref(buf);
return 0;
}
int net_tcp_send_buf(struct net_buf *buf)
{
struct net_context *ctx = net_nbuf_context(buf);
struct net_tcp_hdr *tcphdr = NET_TCP_BUF(buf);
sys_put_be32(ctx->tcp->send_ack, tcphdr->ack);
/* The data stream code always sets this flag, because
* existing stacks (Linux, anyway) seem to ignore data packets
* without a valid-but-already-transmitted ACK. But set it
* anyway if we know we need it just to sanify edge cases.
*/
if (ctx->tcp->sent_ack != ctx->tcp->send_ack) {
tcphdr->flags |= NET_TCP_ACK;
}
ctx->tcp->sent_ack = ctx->tcp->send_ack;
net_nbuf_set_buf_sent(buf, true);
return net_send_data(buf);
}
static void restart_timer(struct net_tcp *tcp)
{
if (sys_slist_is_empty(&tcp->sent_list)) {
tcp->flags |= NET_TCP_RETRYING;
tcp->retry_timeout_ms = INIT_RETRY_MS;
k_timer_start(&tcp->retry_timer, INIT_RETRY_MS, 0);
} else {
k_timer_stop(&tcp->retry_timer);
tcp->flags &= ~NET_TCP_RETRYING;
}
}
int tcp_send_data(struct net_context *context)
{
struct net_buf *buf;
sys_snode_t *node;
/* For now, just send all queued data synchronously. Need to
* add window handling and retry/ACK logic.
*/
SYS_SLIST_FOR_EACH_NODE(&context->tcp->sent_list, node) {
buf = CONTAINER_OF(node, struct net_buf, sent_list);
if (!net_nbuf_buf_sent(buf)) {
net_tcp_send_buf(buf);
}
}
return 0;
}
void net_tcp_ack_received(struct net_context *ctx, uint32_t ack)
{
sys_slist_t *list = &ctx->tcp->sent_list;
sys_snode_t *head;
struct net_buf *buf;
struct net_tcp_hdr *tcphdr;
uint32_t seq;
bool valid_ack = false;
while (!sys_slist_is_empty(list)) {
head = sys_slist_peek_head(list);
buf = CONTAINER_OF(head, struct net_buf, sent_list);
tcphdr = NET_TCP_BUF(buf);
seq = sys_get_be32(tcphdr->seq)
+ net_buf_frags_len(buf) - 1;
if (seq_greater(ack, seq)) {
sys_slist_remove(list, NULL, head);
net_nbuf_unref(buf);
valid_ack = true;
} else {
break;
}
}
if (valid_ack) {
/* Restart the timer on a valid inbound ACK. This
* isn't quite the same behavior as per-packet retry
* timers, but is close in practice (it starts retries
* one timer period after the connection "got stuck")
* and avoids the need to track per-packet timers or
* sent times.
*/
restart_timer(ctx->tcp);
/* And, if we had been retrying, mark all packets
* untransmitted and then resend them. The stalled
* pipe is uncorked again.
*/
if (ctx->tcp->flags & NET_TCP_RETRYING) {
struct net_buf *buf;
sys_snode_t *node;
SYS_SLIST_FOR_EACH_NODE(&ctx->tcp->sent_list, node) {
buf = CONTAINER_OF(node, struct net_buf,
sent_list);
net_nbuf_set_buf_sent(buf, false);
}
tcp_send_data(ctx);
}
}
}
void net_tcp_init(void)
{
k_sem_init(&tcp_lock, 0, UINT_MAX);
k_sem_give(&tcp_lock);
}
#define FIN_TIMEOUT (2 * NET_TCP_MAX_SEG_LIFETIME * MSEC_PER_SEC)
static void fin_timeout(struct k_work *work)
{
struct net_tcp *tcp = CONTAINER_OF(work, struct net_tcp, fin_timer);
NET_DBG("Remote peer didn't confirm connection close");
net_context_put(tcp->context);
}
#if NET_DEBUG
static void validate_state_transition(enum net_tcp_state current,
enum net_tcp_state new)
{
static const uint16_t valid_transitions[] = {
[NET_TCP_CLOSED] = 1 << NET_TCP_LISTEN |
1 << NET_TCP_SYN_SENT,
[NET_TCP_LISTEN] = 1 << NET_TCP_SYN_RCVD |
1 << NET_TCP_SYN_SENT,
[NET_TCP_SYN_RCVD] = 1 << NET_TCP_FIN_WAIT_1 |
1 << NET_TCP_ESTABLISHED |
1 << NET_TCP_LISTEN |
1 << NET_TCP_CLOSED,
[NET_TCP_SYN_SENT] = 1 << NET_TCP_CLOSED |
1 << NET_TCP_ESTABLISHED |
1 << NET_TCP_SYN_RCVD,
[NET_TCP_ESTABLISHED] = 1 << NET_TCP_CLOSE_WAIT |
1 << NET_TCP_FIN_WAIT_1,
[NET_TCP_CLOSE_WAIT] = 1 << NET_TCP_LAST_ACK,
[NET_TCP_LAST_ACK] = 1 << NET_TCP_CLOSED,
[NET_TCP_FIN_WAIT_1] = 1 << NET_TCP_CLOSING |
1 << NET_TCP_FIN_WAIT_2 |
1 << NET_TCP_TIME_WAIT,
[NET_TCP_FIN_WAIT_2] = 1 << NET_TCP_TIME_WAIT,
[NET_TCP_CLOSING] = 1 << NET_TCP_TIME_WAIT,
[NET_TCP_TIME_WAIT] = 1 << NET_TCP_CLOSED
};
if (!(valid_transitions[current] & 1 << new)) {
NET_DBG("Invalid state transition: %s (%d) => %s (%d)",
net_tcp_state_str(current), current,
net_tcp_state_str(new), new);
}
}
#endif /* NET_DEBUG */
void net_tcp_change_state(struct net_tcp *tcp,
enum net_tcp_state new_state)
{
NET_ASSERT(tcp);
if (tcp->state == new_state) {
return;
}
NET_ASSERT(new_state >= NET_TCP_CLOSED &&
new_state <= NET_TCP_CLOSING);
NET_DBG("state@%p %s (%d) => %s (%d)",
tcp, net_tcp_state_str(tcp->state), tcp->state,
net_tcp_state_str(new_state), new_state);
#if NET_DEBUG
validate_state_transition(tcp->state, new_state);
#endif /* NET_DEBUG */
tcp->state = new_state;
if (tcp->state == NET_TCP_FIN_WAIT_1) {
/* Wait up to 2 * MSL before destroying this socket. */
k_delayed_work_cancel(&tcp->fin_timer);
k_delayed_work_init(&tcp->fin_timer, fin_timeout);
k_delayed_work_submit(&tcp->fin_timer, FIN_TIMEOUT);
}
if (tcp->state != NET_TCP_CLOSED) {
return;
}
if (!tcp->context) {
return;
}
/* Remove any port handlers if we are closing */
if (tcp->context->conn_handler) {
net_tcp_unregister(tcp->context->conn_handler);
tcp->context->conn_handler = NULL;
}
if (tcp->context->accept_cb) {
tcp->context->accept_cb(tcp->context,
&tcp->context->remote,
sizeof(struct sockaddr),
-ENETRESET,
tcp->context->user_data);
}
}
void net_tcp_foreach(net_tcp_cb_t cb, void *user_data)
{
int i, key;
key = irq_lock();
for (i = 0; i < NET_MAX_TCP_CONTEXT; i++) {
if (!net_tcp_is_used(&tcp_context[i])) {
continue;
}
irq_unlock(key);
cb(&tcp_context[i], user_data);
key = irq_lock();
}
irq_unlock(key);
}