zephyr/drivers/i2s/i2s_mcux_flexcomm.c
Andrzej Głąbek 7fcf78073b drivers: i2s: Add missing const qualifiers
The i2s_config structure passed to the i2s_configure() function is
not supposed to be modified by the driver. Similarly, the structure
returned by the i2s_config_get() function is not supposed to be
modified outside the driver.
Decorate the pointers to those structures with the const qualifier
and correct one driver that actually modified the structure passed
to i2s_configure().

Signed-off-by: Andrzej Głąbek <andrzej.glabek@nordicsemi.no>
2021-05-03 19:57:49 -04:00

924 lines
24 KiB
C

/*
* Copyright (c) 2021, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpc_i2s
#include <string.h>
#include <drivers/dma.h>
#include <drivers/i2s.h>
#include <drivers/clock_control.h>
#include <fsl_i2s.h>
#include <fsl_dma.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(i2s_mcux_flexcomm);
#define NUM_DMA_BLOCKS 2
/* Device constant configuration parameters */
struct i2s_mcux_config {
I2S_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
void (*irq_config)(const struct device *dev);
};
struct stream {
int32_t state;
const struct device *dev_dma;
uint32_t channel; /* stores the channel for dma */
struct i2s_config cfg;
struct dma_config dma_cfg;
struct dma_block_config dma_block[NUM_DMA_BLOCKS];
bool last_block;
struct k_msgq in_queue;
void *in_msgs[CONFIG_I2S_MCUX_FLEXCOMM_RX_BLOCK_COUNT];
struct k_msgq out_queue;
void *out_msgs[CONFIG_I2S_MCUX_FLEXCOMM_TX_BLOCK_COUNT];
};
struct i2s_mcux_data {
struct stream rx;
struct stream tx;
};
static int i2s_mcux_flexcomm_cfg_convert(uint32_t base_frequency,
enum i2s_dir dir,
const struct i2s_config *i2s_cfg,
i2s_config_t *fsl_cfg)
{
if (dir == I2S_DIR_RX) {
I2S_RxGetDefaultConfig(fsl_cfg);
} else if (dir == I2S_DIR_TX) {
I2S_TxGetDefaultConfig(fsl_cfg);
}
/* Support single channel pair */
if (i2s_cfg->channels == 0 || i2s_cfg->channels > 2) {
LOG_ERR("unsupported number of channels");
return -EINVAL;
}
fsl_cfg->oneChannel = (i2s_cfg->channels == 1);
fsl_cfg->dataLength = i2s_cfg->word_size;
fsl_cfg->frameLength = i2s_cfg->channels * i2s_cfg->word_size;
/* Set master/slave configuration */
switch (i2s_cfg->options & (I2S_OPT_BIT_CLK_SLAVE |
I2S_OPT_FRAME_CLK_SLAVE)) {
case I2S_OPT_BIT_CLK_MASTER | I2S_OPT_FRAME_CLK_MASTER:
fsl_cfg->masterSlave = kI2S_MasterSlaveNormalMaster;
break;
case I2S_OPT_BIT_CLK_SLAVE | I2S_OPT_FRAME_CLK_SLAVE:
fsl_cfg->masterSlave = kI2S_MasterSlaveNormalSlave;
break;
case I2S_OPT_BIT_CLK_SLAVE | I2S_OPT_FRAME_CLK_MASTER:
/* Master using external CLK */
fsl_cfg->masterSlave = kI2S_MasterSlaveExtSckMaster;
break;
case I2S_OPT_BIT_CLK_MASTER | I2S_OPT_FRAME_CLK_SLAVE:
/* WS synchronized master */
fsl_cfg->masterSlave = kI2S_MasterSlaveWsSyncMaster;
break;
}
/*
* Set format. Zephyr choose arbitrary subset of possible
* formats, the mapping below is not tested for anything
* but classic mode and is not guaranteed to be correct.
*/
switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
case I2S_FMT_DATA_FORMAT_I2S:
fsl_cfg->mode = kI2S_ModeI2sClassic;
break;
case I2S_FMT_DATA_FORMAT_PCM_SHORT:
fsl_cfg->mode = kI2S_ModeDspWsShort;
fsl_cfg->wsPol = true;
break;
case I2S_FMT_DATA_FORMAT_PCM_LONG:
fsl_cfg->mode = kI2S_ModeDspWsLong;
fsl_cfg->wsPol = true;
break;
case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
fsl_cfg->mode = kI2S_ModeDspWs50;
fsl_cfg->wsPol = true;
break;
case I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED:
fsl_cfg->mode = kI2S_ModeDspWs50;
fsl_cfg->wsPol = true;
break;
default:
LOG_ERR("Unsupported I2S data format");
return -EINVAL;
}
if (fsl_cfg->masterSlave == kI2S_MasterSlaveNormalMaster ||
fsl_cfg->masterSlave == kI2S_MasterSlaveWsSyncMaster) {
fsl_cfg->divider = base_frequency /
i2s_cfg->frame_clk_freq /
fsl_cfg->frameLength;
}
/*
* Set frame and bit clock polarity according to
* inversion flags.
*/
switch (i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) {
case I2S_FMT_CLK_NF_NB:
break;
case I2S_FMT_CLK_NF_IB:
fsl_cfg->sckPol = !fsl_cfg->sckPol;
break;
case I2S_FMT_CLK_IF_NB:
fsl_cfg->wsPol = !fsl_cfg->wsPol;
break;
case I2S_FMT_CLK_IF_IB:
fsl_cfg->sckPol = !fsl_cfg->sckPol;
fsl_cfg->wsPol = !fsl_cfg->wsPol;
break;
default:
LOG_ERR("Unsupported clocks polarity");
return -EINVAL;
}
return 0;
}
static const struct i2s_config *i2s_mcux_config_get(const struct device *dev,
enum i2s_dir dir)
{
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream;
if (dir == I2S_DIR_RX) {
stream = &dev_data->rx;
} else {
stream = &dev_data->tx;
}
if (stream->state == I2S_STATE_NOT_READY) {
return NULL;
}
return &stream->cfg;
}
static int i2s_mcux_configure(const struct device *dev, enum i2s_dir dir,
const struct i2s_config *i2s_cfg)
{
const struct i2s_mcux_config *cfg = dev->config;
struct i2s_mcux_data *dev_data = dev->data;
I2S_Type *base = cfg->base;
struct stream *stream;
uint32_t base_frequency;
i2s_config_t fsl_cfg;
int result;
uint8_t bits_per_word = 0;
uint8_t bytes_per_word = 0;
if (dir == I2S_DIR_RX) {
stream = &dev_data->rx;
} else if (dir == I2S_DIR_TX) {
stream = &dev_data->tx;
} else if (dir == I2S_DIR_BOTH) {
return -ENOSYS;
} else {
LOG_ERR("Either RX or TX direction must be selected");
return -EINVAL;
}
if (stream->state != I2S_STATE_NOT_READY &&
stream->state != I2S_STATE_READY) {
LOG_ERR("invalid state");
return -EINVAL;
}
if (i2s_cfg->frame_clk_freq == 0U) {
stream->state = I2S_STATE_NOT_READY;
return 0;
}
/*
* The memory block passed by the user to the i2s_write function is
* tightly packed next to each other.
* However for 8-bit word_size the I2S hardware expects the data
* to be in 2bytes which does not match what is passed by the user.
* This will be addressed in a separate PR once the zephyr API committee
* finalizes on an I2S API for the user to probe hardware variations.
*/
if (i2s_cfg->word_size <= 8) {
return -ENOTSUP;
}
/* Figure out function base clock */
if (clock_control_get_rate(cfg->clock_dev,
cfg->clock_subsys, &base_frequency)) {
return -EINVAL;
}
/*
* Validate the configuration by converting it to SDK
* format.
*/
result = i2s_mcux_flexcomm_cfg_convert(base_frequency, dir, i2s_cfg,
&fsl_cfg);
if (result != 0) {
return result;
}
/* Apply the configuration */
if (dir == I2S_DIR_RX) {
I2S_RxInit(cfg->base, &fsl_cfg);
} else {
I2S_TxInit(cfg->base, &fsl_cfg);
}
/* Data length in bits */
bits_per_word = (uint8_t)(((base->CFG1 & I2S_CFG1_DATALEN_MASK) >>
I2S_CFG1_DATALEN_SHIFT) + 1U);
/* Convert to bytes */
bytes_per_word = (bits_per_word + 7U) / 8U;
/* if one channel is disabled, bytes_per_word should be 4U, user should
* pay attention that when data length is shorter than 16,
* the data format: left data put in 0-15 bit and right data should put in 16-31
*/
if (((base->CFG1 & I2S_CFG1_ONECHANNEL_MASK) == 0U)) {
bytes_per_word = 4U;
}
/* since DMA do not support 24bit transfer width, use 32bit instead */
if (bytes_per_word == 3U) {
bytes_per_word = 4U;
}
stream->dma_cfg.dest_data_size = bytes_per_word;
/* Save configuration for get_config */
memcpy(&stream->cfg, i2s_cfg, sizeof(struct i2s_config));
stream->state = I2S_STATE_READY;
return 0;
}
static inline void i2s_purge_stream_buffers(struct stream *stream,
struct k_mem_slab *mem_slab)
{
void *buffer;
while (k_msgq_get(&stream->in_queue, &buffer, K_NO_WAIT) == 0) {
k_mem_slab_free(mem_slab, &buffer);
}
while (k_msgq_get(&stream->out_queue, &buffer, K_NO_WAIT) == 0) {
k_mem_slab_free(mem_slab, &buffer);
}
}
static void i2s_mcux_tx_stream_disable(const struct device *dev, bool drop)
{
const struct i2s_mcux_config *cfg = dev->config;
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->tx;
I2S_Type *base = cfg->base;
LOG_DBG("Stopping DMA channel %u for TX stream", stream->channel);
dma_stop(stream->dev_dma, stream->channel);
/* Clear TX error interrupt flag */
base->FIFOSTAT = I2S_FIFOSTAT_TXERR(1U);
I2S_DisableInterrupts(base, (uint32_t)kI2S_TxErrorFlag);
if (base->CFG1 & I2S_CFG1_MAINENABLE_MASK) {
/* Wait until all transmitted data get out of FIFO */
while ((base->FIFOSTAT & I2S_FIFOSTAT_TXEMPTY_MASK) == 0U) {
}
/*
* The last piece of valid data can be still being transmitted from
* I2S at this moment
*/
/* Write additional data to FIFO */
base->FIFOWR = 0U;
while ((base->FIFOSTAT & I2S_FIFOSTAT_TXEMPTY_MASK) == 0U) {
}
/* At this moment the additional data is out of FIFO, we can stop I2S */
/* Disable TX DMA */
base->FIFOCFG &= (~I2S_FIFOCFG_DMATX_MASK);
base->FIFOCFG |= I2S_FIFOCFG_EMPTYTX_MASK;
I2S_Disable(base);
}
/* purge buffers queued in the stream */
if (drop) {
i2s_purge_stream_buffers(stream, stream->cfg.mem_slab);
}
}
static void i2s_mcux_rx_stream_disable(const struct device *dev, bool drop)
{
const struct i2s_mcux_config *cfg = dev->config;
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->rx;
I2S_Type *base = cfg->base;
LOG_DBG("Stopping DMA channel %u for RX stream", stream->channel);
dma_stop(stream->dev_dma, stream->channel);
/* Clear RX error interrupt flag */
base->FIFOSTAT = I2S_FIFOSTAT_RXERR(1U);
I2S_DisableInterrupts(base, (uint32_t)kI2S_RxErrorFlag);
/* stop transfer */
/* Disable Rx DMA */
base->FIFOCFG &= (~I2S_FIFOCFG_DMARX_MASK);
base->FIFOCFG |= I2S_FIFOCFG_EMPTYRX_MASK;
I2S_Disable(base);
/* purge buffers queued in the stream */
if (drop) {
i2s_purge_stream_buffers(stream, stream->cfg.mem_slab);
}
}
static void i2s_mcux_config_dma_blocks(const struct device *dev,
enum i2s_dir dir, uint32_t *buffer)
{
const struct i2s_mcux_config *cfg = dev->config;
struct i2s_mcux_data *dev_data = dev->data;
I2S_Type *base = cfg->base;
struct dma_block_config *blk_cfg;
struct stream *stream;
if (dir == I2S_DIR_RX) {
stream = &dev_data->rx;
} else {
stream = &dev_data->tx;
}
blk_cfg = &stream->dma_block[0];
memset(blk_cfg, 0, sizeof(struct dma_block_config));
if (dir == I2S_DIR_RX) {
blk_cfg->source_address = (uint32_t)&base->FIFORD;
blk_cfg->dest_address = (uint32_t)buffer[0];
blk_cfg->block_size = stream->cfg.block_size;
blk_cfg->source_gather_en = 1;
blk_cfg->next_block = &stream->dma_block[1];
blk_cfg = &stream->dma_block[1];
memset(blk_cfg, 0, sizeof(struct dma_block_config));
blk_cfg->source_address = (uint32_t)&base->FIFORD;
blk_cfg->dest_address = (uint32_t)buffer[1];
blk_cfg->block_size = stream->cfg.block_size;
stream->dma_cfg.block_count = NUM_DMA_BLOCKS;
} else {
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
blk_cfg->source_address = (uint32_t)buffer;
blk_cfg->block_size = stream->cfg.block_size;
stream->dma_cfg.block_count = 1;
}
stream->dma_cfg.head_block = &stream->dma_block[0];
stream->dma_cfg.user_data = (void *)dev;
dma_config(stream->dev_dma, stream->channel, &stream->dma_cfg);
LOG_DBG("dma_slot is %d", stream->dma_cfg.dma_slot);
LOG_DBG("channel_direction is %d", stream->dma_cfg.channel_direction);
LOG_DBG("complete_callback_en is %d",
stream->dma_cfg.complete_callback_en);
LOG_DBG("error_callback_en is %d", stream->dma_cfg.error_callback_en);
LOG_DBG("source_handshake is %d", stream->dma_cfg.source_handshake);
LOG_DBG("dest_handshake is %d", stream->dma_cfg.dest_handshake);
LOG_DBG("channel_priority is %d", stream->dma_cfg.channel_priority);
LOG_DBG("source_chaining_en is %d", stream->dma_cfg.source_chaining_en);
LOG_DBG("dest_chaining_en is %d", stream->dma_cfg.dest_chaining_en);
LOG_DBG("linked_channel is %d", stream->dma_cfg.linked_channel);
LOG_DBG("source_data_size is %d", stream->dma_cfg.source_data_size);
LOG_DBG("dest_data_size is %d", stream->dma_cfg.dest_data_size);
LOG_DBG("source_burst_length is %d", stream->dma_cfg.source_burst_length);
LOG_DBG("dest_burst_length is %d", stream->dma_cfg.dest_burst_length);
LOG_DBG("block_count is %d", stream->dma_cfg.block_count);
}
/* This function is executed in the interrupt context */
static void i2s_mcux_dma_tx_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status)
{
const struct device *dev = (struct device *)arg;
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->tx;
void *buffer;
int ret;
LOG_DBG("tx cb: %d", stream->state);
ret = k_msgq_get(&stream->out_queue, &buffer, K_NO_WAIT);
if (ret == 0) {
/* transmission complete. free the buffer */
k_mem_slab_free(stream->cfg.mem_slab, &buffer);
} else {
LOG_ERR("no buffer in output queue for channel %u", channel);
}
/* Received a STOP trigger, terminate TX immediately */
if (stream->last_block) {
stream->state = I2S_STATE_READY;
i2s_mcux_tx_stream_disable(dev, false);
LOG_DBG("TX STOPPED");
return;
}
switch (stream->state) {
case I2S_STATE_RUNNING:
case I2S_STATE_STOPPING:
/* get the next buffer from queue */
ret = k_msgq_get(&stream->in_queue, &buffer, K_NO_WAIT);
if (ret == 0) {
/* config the DMA */
i2s_mcux_config_dma_blocks(dev, I2S_DIR_TX, (uint32_t *)buffer);
k_msgq_put(&stream->out_queue, &buffer, K_NO_WAIT);
dma_start(stream->dev_dma, stream->channel);
}
if (ret || status) {
/*
* DMA encountered an error (status != 0)
* or
* No bufers in input queue
*/
LOG_DBG("DMA status %08x channel %u k_msgq_get ret %d",
status, channel, ret);
if (stream->state == I2S_STATE_STOPPING) {
stream->state = I2S_STATE_READY;
} else {
stream->state = I2S_STATE_ERROR;
}
i2s_mcux_tx_stream_disable(dev, false);
}
break;
case I2S_STATE_ERROR:
i2s_mcux_tx_stream_disable(dev, true);
break;
}
}
static void i2s_mcux_dma_rx_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status)
{
struct device *dev = (struct device *)arg;
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->rx;
void *buffer;
int ret;
LOG_DBG("rx cb: %d", stream->state);
if (status != 0) {
stream->state = I2S_STATE_ERROR;
i2s_mcux_rx_stream_disable(dev, false);
return;
}
switch (stream->state) {
case I2S_STATE_STOPPING:
case I2S_STATE_RUNNING:
/* retrieve buffer from input queue */
ret = k_msgq_get(&stream->in_queue, &buffer, K_NO_WAIT);
__ASSERT_NO_MSG(ret == 0);
/* put buffer to output queue */
ret = k_msgq_put(&stream->out_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer %p -> out_queue %p err %d", buffer,
&stream->out_queue, ret);
i2s_mcux_rx_stream_disable(dev, false);
stream->state = I2S_STATE_ERROR;
}
if (stream->state == I2S_STATE_RUNNING) {
/* allocate new buffer for next audio frame */
ret = k_mem_slab_alloc(stream->cfg.mem_slab, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer alloc from slab %p err %d",
stream->cfg.mem_slab, ret);
i2s_mcux_rx_stream_disable(dev, false);
stream->state = I2S_STATE_ERROR;
} else {
const struct i2s_mcux_config *cfg = dev->config;
I2S_Type *base = cfg->base;
dma_reload(stream->dev_dma, stream->channel,
(uint32_t)&base->FIFORD, (uint32_t)buffer,
stream->cfg.block_size);
/* put buffer in input queue */
ret = k_msgq_put(&stream->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer %p -> in_queue %p err %d",
buffer, &stream->in_queue, ret);
}
dma_start(stream->dev_dma, stream->channel);
}
} else {
/* Received a STOP/DRAIN trigger */
i2s_mcux_rx_stream_disable(dev, true);
stream->state = I2S_STATE_READY;
}
break;
case I2S_STATE_ERROR:
i2s_mcux_rx_stream_disable(dev, true);
break;
}
}
static int i2s_mcux_tx_stream_start(const struct device *dev)
{
int ret = 0;
void *buffer;
const struct i2s_mcux_config *cfg = dev->config;
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->tx;
I2S_Type *base = cfg->base;
/* retrieve buffer from input queue */
ret = k_msgq_get(&stream->in_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("No buffer in input queue to start transmission");
return ret;
}
i2s_mcux_config_dma_blocks(dev, I2S_DIR_TX, (uint32_t *)buffer);
/* put buffer in output queue */
ret = k_msgq_put(&stream->out_queue, &buffer, K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in output queue");
return ret;
}
/* Enable TX DMA */
base->FIFOCFG |= I2S_FIFOCFG_DMATX_MASK;
ret = dma_start(stream->dev_dma, stream->channel);
if (ret < 0) {
LOG_ERR("dma_start failed (%d)", ret);
return ret;
}
I2S_Enable(base);
I2S_EnableInterrupts(base, (uint32_t)kI2S_TxErrorFlag);
return 0;
}
static int i2s_mcux_rx_stream_start(const struct device *dev)
{
int ret = 0;
void *buffer[NUM_DMA_BLOCKS];
const struct i2s_mcux_config *cfg = dev->config;
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->rx;
I2S_Type *base = cfg->base;
uint8_t num_of_bufs;
num_of_bufs = k_mem_slab_num_free_get(stream->cfg.mem_slab);
/*
* Need at least two bffers on the RX memory slab for
* reliable DMA reception.
*/
if (num_of_bufs <= 1) {
return -EINVAL;
}
for (int i = 0; i < NUM_DMA_BLOCKS; i++) {
ret = k_mem_slab_alloc(stream->cfg.mem_slab, &buffer[i],
K_NO_WAIT);
if (ret != 0) {
LOG_ERR("buffer alloc from mem_slab failed (%d)", ret);
return ret;
}
}
i2s_mcux_config_dma_blocks(dev, I2S_DIR_RX, (uint32_t *)buffer);
/* put buffers in input queue */
for (int i = 0; i < NUM_DMA_BLOCKS; i++) {
ret = k_msgq_put(&stream->in_queue, &buffer[i], K_NO_WAIT);
if (ret != 0) {
LOG_ERR("failed to put buffer in input queue");
return ret;
}
}
/* Enable RX DMA */
base->FIFOCFG |= I2S_FIFOCFG_DMARX_MASK;
ret = dma_start(stream->dev_dma, stream->channel);
if (ret < 0) {
LOG_ERR("Failed to start DMA Ch%d (%d)", stream->channel, ret);
return ret;
}
I2S_Enable(base);
I2S_EnableInterrupts(base, (uint32_t)kI2S_RxErrorFlag);
return 0;
}
static int i2s_mcux_trigger(const struct device *dev, enum i2s_dir dir,
enum i2s_trigger_cmd cmd)
{
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream;
unsigned int key;
int ret = 0;
if (dir == I2S_DIR_RX) {
stream = &dev_data->rx;
} else if (dir == I2S_DIR_TX) {
stream = &dev_data->tx;
} else if (dir == I2S_DIR_BOTH) {
return -ENOSYS;
} else {
LOG_ERR("Either RX or TX direction must be selected");
return -EINVAL;
}
key = irq_lock();
switch (cmd) {
case I2S_TRIGGER_START:
if (stream->state != I2S_STATE_READY) {
LOG_ERR("START trigger: invalid state %d",
stream->state);
ret = -EIO;
break;
}
if (dir == I2S_DIR_TX) {
ret = i2s_mcux_tx_stream_start(dev);
} else {
ret = i2s_mcux_rx_stream_start(dev);
}
if (ret < 0) {
LOG_ERR("START trigger failed %d", ret);
break;
}
stream->state = I2S_STATE_RUNNING;
stream->last_block = false;
break;
case I2S_TRIGGER_STOP:
if (stream->state != I2S_STATE_RUNNING) {
LOG_ERR("STOP trigger: invalid state %d", stream->state);
ret = -EIO;
break;
}
stream->state = I2S_STATE_STOPPING;
stream->last_block = true;
break;
case I2S_TRIGGER_DRAIN:
if (stream->state != I2S_STATE_RUNNING) {
LOG_ERR("DRAIN trigger: invalid state %d", stream->state);
ret = -EIO;
break;
}
stream->state = I2S_STATE_STOPPING;
break;
case I2S_TRIGGER_DROP:
if (stream->state == I2S_STATE_NOT_READY) {
LOG_ERR("DROP trigger: invalid state %d", stream->state);
ret = -EIO;
break;
}
stream->state = I2S_STATE_READY;
if (dir == I2S_DIR_TX) {
i2s_mcux_tx_stream_disable(dev, true);
} else {
i2s_mcux_rx_stream_disable(dev, true);
}
break;
case I2S_TRIGGER_PREPARE:
if (stream->state != I2S_STATE_ERROR) {
LOG_ERR("PREPARE trigger: invalid state %d", stream->state);
ret = -EIO;
break;
}
stream->state = I2S_STATE_READY;
if (dir == I2S_DIR_TX) {
i2s_mcux_tx_stream_disable(dev, true);
} else {
i2s_mcux_rx_stream_disable(dev, true);
}
break;
default:
LOG_ERR("Unsupported trigger command");
ret = -EINVAL;
}
irq_unlock(key);
return ret;
}
static int i2s_mcux_read(const struct device *dev, void **mem_block,
size_t *size)
{
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->rx;
void *buffer;
int ret = 0;
if (stream->state == I2S_STATE_NOT_READY) {
LOG_ERR("invalid state %d", stream->state);
return -EIO;
}
ret = k_msgq_get(&stream->out_queue, &buffer,
SYS_TIMEOUT_MS(stream->cfg.timeout));
if (ret != 0) {
if (stream->state == I2S_STATE_ERROR) {
return -EIO;
} else {
return -EAGAIN;
}
}
*mem_block = buffer;
*size = stream->cfg.block_size;
return 0;
}
static int i2s_mcux_write(const struct device *dev, void *mem_block,
size_t size)
{
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->tx;
int ret;
if (stream->state != I2S_STATE_RUNNING &&
stream->state != I2S_STATE_READY) {
LOG_ERR("invalid state (%d)", stream->state);
return -EIO;
}
ret = k_msgq_put(&stream->in_queue, &mem_block,
SYS_TIMEOUT_MS(stream->cfg.timeout));
if (ret) {
LOG_ERR("k_msgq_put failed %d", ret);
return ret;
}
return ret;
}
static const struct i2s_driver_api i2s_mcux_driver_api = {
.configure = i2s_mcux_configure,
.config_get = i2s_mcux_config_get,
.read = i2s_mcux_read,
.write = i2s_mcux_write,
.trigger = i2s_mcux_trigger,
};
static void i2s_mcux_isr(const struct device *dev)
{
const struct i2s_mcux_config *cfg = dev->config;
struct i2s_mcux_data *dev_data = dev->data;
struct stream *stream = &dev_data->tx;
I2S_Type *base = cfg->base;
uint32_t intstat = base->FIFOINTSTAT;
if ((intstat & I2S_FIFOINTSTAT_TXERR_MASK) != 0UL) {
/* Clear TX error interrupt flag */
base->FIFOSTAT = I2S_FIFOSTAT_TXERR(1U);
stream = &dev_data->tx;
stream->state = I2S_STATE_ERROR;
}
if ((intstat & I2S_FIFOINTSTAT_RXERR_MASK) != 0UL) {
/* Clear RX error interrupt flag */
base->FIFOSTAT = I2S_FIFOSTAT_RXERR(1U);
stream = &dev_data->rx;
stream->state = I2S_STATE_ERROR;
}
}
static int i2s_mcux_init(const struct device *dev)
{
const struct i2s_mcux_config *cfg = dev->config;
struct i2s_mcux_data *const data = dev->data;
cfg->irq_config(dev);
/* Initialize the buffer queues */
k_msgq_init(&data->tx.in_queue, (char *)data->tx.in_msgs,
sizeof(void *), CONFIG_I2S_MCUX_FLEXCOMM_TX_BLOCK_COUNT);
k_msgq_init(&data->rx.in_queue, (char *)data->rx.in_msgs,
sizeof(void *), CONFIG_I2S_MCUX_FLEXCOMM_RX_BLOCK_COUNT);
k_msgq_init(&data->tx.out_queue, (char *)data->tx.out_msgs,
sizeof(void *), CONFIG_I2S_MCUX_FLEXCOMM_TX_BLOCK_COUNT);
k_msgq_init(&data->rx.out_queue, (char *)data->rx.out_msgs,
sizeof(void *), CONFIG_I2S_MCUX_FLEXCOMM_RX_BLOCK_COUNT);
if (data->tx.dev_dma != NULL) {
if (!device_is_ready(data->tx.dev_dma)) {
LOG_ERR("%s device not ready", data->tx.dev_dma->name);
return -ENODEV;
}
}
if (data->rx.dev_dma != NULL) {
if (!device_is_ready(data->rx.dev_dma)) {
LOG_ERR("%s device not ready", data->rx.dev_dma->name);
return -ENODEV;
}
}
data->tx.state = I2S_STATE_NOT_READY;
data->rx.state = I2S_STATE_NOT_READY;
LOG_INF("Device %s inited", dev->name);
return 0;
}
#define I2S_DMA_CHANNELS(id) \
.tx = { \
.dev_dma = UTIL_AND( \
DT_DMAS_HAS_NAME(DT_NODELABEL(i2s##id), tx), \
DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, tx))), \
.channel = UTIL_AND( \
DT_DMAS_HAS_NAME(DT_NODELABEL(i2s##id), tx), \
DT_INST_DMAS_CELL_BY_NAME(id, tx, channel)), \
.dma_cfg = { \
.channel_direction = MEMORY_TO_PERIPHERAL, \
.dma_callback = i2s_mcux_dma_tx_callback, \
.source_data_size = 1, \
.block_count = 1, \
} \
}, \
.rx = { \
.dev_dma = UTIL_AND( \
DT_DMAS_HAS_NAME(DT_NODELABEL(i2s##id), rx), \
DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, rx))), \
.channel = UTIL_AND( \
DT_DMAS_HAS_NAME(DT_NODELABEL(i2s##id), rx), \
DT_INST_DMAS_CELL_BY_NAME(id, rx, channel)), \
.dma_cfg = { \
.channel_direction = PERIPHERAL_TO_MEMORY, \
.dma_callback = i2s_mcux_dma_rx_callback, \
.source_data_size = 1, \
.block_count = 1, \
} \
}
#define I2S_MCUX_FLEXCOMM_DEVICE(id) \
static void i2s_mcux_config_func_##id(const struct device *dev); \
static const struct i2s_mcux_config i2s_mcux_config_##id = { \
.base = \
(I2S_Type *)DT_INST_REG_ADDR(id), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name),\
.irq_config = i2s_mcux_config_func_##id, \
}; \
static struct i2s_mcux_data i2s_mcux_data_##id = { \
I2S_DMA_CHANNELS(id) \
}; \
DEVICE_DT_INST_DEFINE(id, \
&i2s_mcux_init, \
NULL, \
&i2s_mcux_data_##id, \
&i2s_mcux_config_##id, \
POST_KERNEL, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&i2s_mcux_driver_api); \
static void i2s_mcux_config_func_##id(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(id), \
DT_INST_IRQ(id, priority), \
i2s_mcux_isr, \
DEVICE_DT_INST_GET(id), \
0); \
irq_enable(DT_INST_IRQN(id)); \
}
DT_INST_FOREACH_STATUS_OKAY(I2S_MCUX_FLEXCOMM_DEVICE)