cf24124efa
There are cases when attributes of mapped virtual memory need to be updated. E.g. in case there is loadable library/module code loaded to the l2 memory then memory needs to be read-write. After the code is loaded and is ready to be executed then attributes of mapped memory should be updated to read-only/executable without loosing memory contents. Signed-off-by: Jaroslaw Stelter <Jaroslaw.Stelter@intel.com>
335 lines
7.5 KiB
C
335 lines
7.5 KiB
C
/*
|
|
* Copyright (c) 2021 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Driver to utilize TLB on Intel Audio DSP
|
|
*
|
|
* TLB (Translation Lookup Buffer) table is used to map between
|
|
* physical and virtual memory. This is global to all cores
|
|
* on the DSP, as changes to the TLB table are visible to
|
|
* all cores.
|
|
*
|
|
* Note that all passed in addresses should be in cached range
|
|
* (aka cached addresses). Due to the need to calculate TLB
|
|
* indexes, virtual addresses will be converted internally to
|
|
* cached one via z_soc_cached_ptr(). However, physical addresses
|
|
* are untouched.
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT intel_adsp_tlb
|
|
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <zephyr/sys/__assert.h>
|
|
#include <zephyr/sys/check.h>
|
|
#include <zephyr/sys/mem_manage.h>
|
|
#include <zephyr/sys/util.h>
|
|
|
|
#include <soc.h>
|
|
#include <cavs-mem.h>
|
|
|
|
#include <zephyr/drivers/mm/system_mm.h>
|
|
#include "mm_drv_common.h"
|
|
|
|
DEVICE_MMIO_TOPLEVEL_STATIC(tlb_regs, DT_DRV_INST(0));
|
|
|
|
#define TLB_BASE \
|
|
((mm_reg_t)DEVICE_MMIO_TOPLEVEL_GET(tlb_regs))
|
|
|
|
/*
|
|
* Number of significant bits in the page index (defines the size of
|
|
* the table)
|
|
*/
|
|
#if defined(CONFIG_SOC_SERIES_INTEL_CAVS_V15)
|
|
# define TLB_PADDR_SIZE 9
|
|
#else
|
|
# define TLB_PADDR_SIZE 11
|
|
#endif
|
|
|
|
#define TLB_PADDR_MASK ((1 << TLB_PADDR_SIZE) - 1)
|
|
#define TLB_ENABLE_BIT BIT(TLB_PADDR_SIZE)
|
|
|
|
static struct k_spinlock tlb_lock;
|
|
|
|
/**
|
|
* Calculate the index to the TLB table.
|
|
*
|
|
* @param vaddr Page-aligned virtual address.
|
|
* @return Index to the TLB table.
|
|
*/
|
|
static uint32_t get_tlb_entry_idx(uintptr_t vaddr)
|
|
{
|
|
return (POINTER_TO_UINT(vaddr) - CONFIG_KERNEL_VM_BASE) /
|
|
CONFIG_MM_DRV_PAGE_SIZE;
|
|
}
|
|
|
|
int sys_mm_drv_map_page(void *virt, uintptr_t phys, uint32_t flags)
|
|
{
|
|
k_spinlock_key_t key;
|
|
uint32_t entry_idx;
|
|
uint16_t entry;
|
|
uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE);
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Cached addresses for both physical and virtual.
|
|
*
|
|
* As the main memory is in cached address ranges,
|
|
* the cached physical address is needed to perform
|
|
* bound check.
|
|
*/
|
|
uintptr_t pa = POINTER_TO_UINT(z_soc_cached_ptr(UINT_TO_POINTER(phys)));
|
|
uintptr_t va = POINTER_TO_UINT(z_soc_cached_ptr(virt));
|
|
|
|
ARG_UNUSED(flags);
|
|
|
|
/* Make sure inputs are page-aligned */
|
|
CHECKIF(!sys_mm_drv_is_addr_aligned(pa) ||
|
|
!sys_mm_drv_is_addr_aligned(va)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Check bounds of physical address space */
|
|
CHECKIF((pa < L2_SRAM_BASE) ||
|
|
(pa >= (L2_SRAM_BASE + L2_SRAM_SIZE))) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Check bounds of virtual address space */
|
|
CHECKIF((va < CONFIG_KERNEL_VM_BASE) ||
|
|
(va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
key = k_spin_lock(&tlb_lock);
|
|
|
|
entry_idx = get_tlb_entry_idx(va);
|
|
|
|
/*
|
|
* The address part of the TLB entry takes the lowest
|
|
* TLB_PADDR_SIZE bits of the physical page number,
|
|
* and discards the highest bits. This is due to the
|
|
* architecture design where the same physical page
|
|
* can be accessed via two addresses. One address goes
|
|
* through the cache, and the other one accesses
|
|
* memory directly (without cache). The difference
|
|
* between these two addresses are in the higher bits,
|
|
* and the lower bits are the same. And this is why
|
|
* TLB only cares about the lower part of the physical
|
|
* address.
|
|
*/
|
|
entry = ((pa / CONFIG_MM_DRV_PAGE_SIZE) & TLB_PADDR_MASK);
|
|
|
|
/* Enable the translation in the TLB entry */
|
|
entry |= TLB_ENABLE_BIT;
|
|
|
|
tlb_entries[entry_idx] = entry;
|
|
|
|
/*
|
|
* Invalid the cache of the newly mapped virtual page to
|
|
* avoid stale data.
|
|
*/
|
|
z_xtensa_cache_inv(virt, CONFIG_MM_DRV_PAGE_SIZE);
|
|
|
|
k_spin_unlock(&tlb_lock, key);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int sys_mm_drv_map_region(void *virt, uintptr_t phys,
|
|
size_t size, uint32_t flags)
|
|
{
|
|
void *va = z_soc_cached_ptr(virt);
|
|
|
|
return sys_mm_drv_simple_map_region(va, phys, size, flags);
|
|
}
|
|
|
|
int sys_mm_drv_map_array(void *virt, uintptr_t *phys,
|
|
size_t cnt, uint32_t flags)
|
|
{
|
|
void *va = z_soc_cached_ptr(virt);
|
|
|
|
return sys_mm_drv_simple_map_array(va, phys, cnt, flags);
|
|
}
|
|
|
|
int sys_mm_drv_unmap_page(void *virt)
|
|
{
|
|
k_spinlock_key_t key;
|
|
uint32_t entry_idx;
|
|
uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE);
|
|
int ret = 0;
|
|
|
|
/* Use cached virtual address */
|
|
uintptr_t va = POINTER_TO_UINT(z_soc_cached_ptr(virt));
|
|
|
|
/* Check bounds of virtual address space */
|
|
CHECKIF((va < CONFIG_KERNEL_VM_BASE) ||
|
|
(va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Make sure inputs are page-aligned */
|
|
CHECKIF(!sys_mm_drv_is_addr_aligned(va)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
key = k_spin_lock(&tlb_lock);
|
|
|
|
/*
|
|
* Flush the cache to make sure the backing physical page
|
|
* has the latest data.
|
|
*/
|
|
z_xtensa_cache_flush(virt, CONFIG_MM_DRV_PAGE_SIZE);
|
|
|
|
entry_idx = get_tlb_entry_idx(va);
|
|
|
|
/* Simply clear the enable bit */
|
|
tlb_entries[entry_idx] &= ~TLB_ENABLE_BIT;
|
|
|
|
k_spin_unlock(&tlb_lock, key);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int sys_mm_drv_unmap_region(void *virt, size_t size)
|
|
{
|
|
void *va = z_soc_cached_ptr(virt);
|
|
|
|
return sys_mm_drv_simple_unmap_region(va, size);
|
|
}
|
|
|
|
int sys_mm_drv_page_phys_get(void *virt, uintptr_t *phys)
|
|
{
|
|
uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE);
|
|
uintptr_t ent;
|
|
int ret = 0;
|
|
|
|
/* Use cached address */
|
|
uintptr_t va = POINTER_TO_UINT(z_soc_cached_ptr(virt));
|
|
|
|
CHECKIF(!sys_mm_drv_is_addr_aligned(va)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Check bounds of virtual address space */
|
|
CHECKIF((va < CONFIG_KERNEL_VM_BASE) ||
|
|
(va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ent = tlb_entries[get_tlb_entry_idx(va)];
|
|
|
|
if ((ent & TLB_ENABLE_BIT) != TLB_ENABLE_BIT) {
|
|
ret = -EFAULT;
|
|
} else {
|
|
if (phys != NULL) {
|
|
*phys = (ent & TLB_PADDR_MASK) * CONFIG_MM_DRV_PAGE_SIZE + L2_SRAM_BASE;
|
|
}
|
|
|
|
ret = 0;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int sys_mm_drv_page_flag_get(void *virt, uint32_t *flags)
|
|
{
|
|
ARG_UNUSED(virt);
|
|
|
|
/*
|
|
* There are no caching mode, or R/W, or eXecution (etc.) bits.
|
|
* So just return 0.
|
|
*/
|
|
|
|
*flags = 0U;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sys_mm_drv_update_page_flags(void *virt, uint32_t flags)
|
|
{
|
|
ARG_UNUSED(virt);
|
|
ARG_UNUSED(flags);
|
|
|
|
/*
|
|
* There are no caching mode, or R/W, or eXecution (etc.) bits.
|
|
* So just return 0.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sys_mm_drv_update_region_flags(void *virt, size_t size,
|
|
uint32_t flags)
|
|
{
|
|
void *va = z_soc_cached_ptr(virt);
|
|
|
|
return sys_mm_drv_simple_update_region_flags(va, size, flags);
|
|
}
|
|
|
|
|
|
int sys_mm_drv_remap_region(void *virt_old, size_t size,
|
|
void *virt_new)
|
|
{
|
|
void *va_new = z_soc_cached_ptr(virt_new);
|
|
void *va_old = z_soc_cached_ptr(virt_old);
|
|
|
|
return sys_mm_drv_simple_remap_region(va_old, size, va_new);
|
|
}
|
|
|
|
int sys_mm_drv_move_region(void *virt_old, size_t size, void *virt_new,
|
|
uintptr_t phys_new)
|
|
{
|
|
int ret;
|
|
|
|
void *va_new = z_soc_cached_ptr(virt_new);
|
|
void *va_old = z_soc_cached_ptr(virt_old);
|
|
|
|
ret = sys_mm_drv_simple_move_region(va_old, size, va_new, phys_new);
|
|
|
|
/*
|
|
* Since memcpy() is done in virtual space, need to
|
|
* flush the cache to make sure the backing physical
|
|
* pages have the new data.
|
|
*/
|
|
z_xtensa_cache_flush(va_new, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sys_mm_drv_move_array(void *virt_old, size_t size, void *virt_new,
|
|
uintptr_t *phys_new, size_t phys_cnt)
|
|
{
|
|
int ret;
|
|
|
|
void *va_new = z_soc_cached_ptr(virt_new);
|
|
void *va_old = z_soc_cached_ptr(virt_old);
|
|
|
|
ret = sys_mm_drv_simple_move_array(va_old, size, va_new,
|
|
phys_new, phys_cnt);
|
|
|
|
/*
|
|
* Since memcpy() is done in virtual space, need to
|
|
* flush the cache to make sure the backing physical
|
|
* pages have the new data.
|
|
*/
|
|
z_xtensa_cache_flush(va_new, size);
|
|
|
|
return ret;
|
|
}
|