zephyr/drivers/timer/hpet.c

468 lines
12 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT intel_hpet
#include <zephyr/init.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/irq.h>
#include <zephyr/linker/sections.h>
#include <zephyr/dt-bindings/interrupt-controller/intel-ioapic.h>
#include <soc.h>
/**
* @file
* @brief HPET (High Precision Event Timers) driver
*
* HPET hardware contains a number of timers which can be used by
* the operating system, where the number of timers is implementation
* specific. The timers are implemented as a single up-counter with
* a set of comparators where the counter increases monotonically.
* Each timer has a match register and a comparator, and can generate
* an interrupt when the value in the match register equals the value of
* the free running counter. Some of these timers can be enabled to
* generate periodic interrupt.
*
* The HPET registers are usually mapped to memory space on x86
* hardware. If this is not the case, custom register access functions
* can be used by defining macro HPET_USE_CUSTOM_REG_ACCESS_FUNCS in
* soc.h, and implementing necessary initialization and access
* functions as described below.
*
* HPET_COUNTER_CLK_PERIOD can be overridden in soc.h if
* COUNTER_CLK_PERIOD is not in femtoseconds (1e-15 sec).
*/
/* General Configuration register */
#define GCONF_ENABLE BIT(0)
#define GCONF_LR BIT(1) /* legacy interrupt routing, */
/* disables PIT */
/* General Interrupt Status register */
#define TIMER0_INT_STS BIT(0)
/* Timer Configuration and Capabilities register */
#define TIMER_CONF_INT_LEVEL BIT(1)
#define TIMER_CONF_INT_ENABLE BIT(2)
#define TIMER_CONF_PERIODIC BIT(3)
#define TIMER_CONF_VAL_SET BIT(6)
#define TIMER_CONF_MODE32 BIT(8)
#define TIMER_CONF_FSB_EN BIT(14) /* FSB interrupt delivery */
/* enable */
DEVICE_MMIO_TOPLEVEL_STATIC(hpet_regs, DT_DRV_INST(0));
#define HPET_REG_ADDR(off) \
((mm_reg_t)(DEVICE_MMIO_TOPLEVEL_GET(hpet_regs) + (off)))
/* High dword of General Capabilities and ID register */
#define CLK_PERIOD_REG HPET_REG_ADDR(0x04)
/* General Configuration register */
#define GCONF_REG HPET_REG_ADDR(0x10)
/* General Interrupt Status register */
#define INTR_STATUS_REG HPET_REG_ADDR(0x20)
/* Main Counter Register */
#define MAIN_COUNTER_LOW_REG HPET_REG_ADDR(0xf0)
#define MAIN_COUNTER_HIGH_REG HPET_REG_ADDR(0xf4)
/* Timer 0 Configuration and Capabilities register */
#define TIMER0_CONF_REG HPET_REG_ADDR(0x100)
/* Timer 0 Comparator Register */
#define TIMER0_COMPARATOR_LOW_REG HPET_REG_ADDR(0x108)
#define TIMER0_COMPARATOR_HIGH_REG HPET_REG_ADDR(0x10c)
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = DT_IRQN(DT_INST(0, intel_hpet));
#endif
/**
* @brief Return the value of the main counter.
*
* @return Value of Main Counter
*/
static inline uint64_t hpet_counter_get(void)
{
#ifdef CONFIG_64BIT
uint64_t val = sys_read64(MAIN_COUNTER_LOW_REG);
return val;
#else
uint32_t high;
uint32_t low;
do {
high = sys_read32(MAIN_COUNTER_HIGH_REG);
low = sys_read32(MAIN_COUNTER_LOW_REG);
} while (high != sys_read32(MAIN_COUNTER_HIGH_REG));
return ((uint64_t)high << 32) | low;
#endif
}
/**
* @brief Get COUNTER_CLK_PERIOD
*
* Read and return the COUNTER_CLK_PERIOD, which is the high
* 32-bit of the General Capabilities and ID Register. This can
* be used to calculate the frequency of the main counter.
*
* Usually the period is in femtoseconds. If this is not
* the case, define HPET_COUNTER_CLK_PERIOD in soc.h so
* it can be used to calculate frequency.
*
* @return COUNTER_CLK_PERIOD
*/
static inline uint32_t hpet_counter_clk_period_get(void)
{
return sys_read32(CLK_PERIOD_REG);
}
/**
* @brief Return the value of the General Configuration Register
*
* @return Value of the General Configuration Register
*/
static inline uint32_t hpet_gconf_get(void)
{
return sys_read32(GCONF_REG);
}
/**
* @brief Write to General Configuration Register
*
* @param val Value to be written to the register
*/
static inline void hpet_gconf_set(uint32_t val)
{
sys_write32(val, GCONF_REG);
}
/**
* @brief Return the value of the Timer Configuration Register
*
* This reads and returns the value of the Timer Configuration
* Register of Timer #0.
*
* @return Value of the Timer Configuration Register
*/
static inline uint32_t hpet_timer_conf_get(void)
{
return sys_read32(TIMER0_CONF_REG);
}
/**
* @brief Write to the Timer Configuration Register
*
* This writes the specified value to the Timer Configuration
* Register of Timer #0.
*
* @param val Value to be written to the register
*/
static inline void hpet_timer_conf_set(uint32_t val)
{
sys_write32(val, TIMER0_CONF_REG);
}
/*
* The following register access functions should work on generic x86
* hardware. If the targeted SoC requires special handling of HPET
* registers, these functions will need to be implemented in the SoC
* layer by first defining the macro HPET_USE_CUSTOM_REG_ACCESS_FUNCS
* in soc.h to signal such intent.
*
* This is a list of functions which must be implemented in the SoC
* layer:
* void hpet_timer_comparator_set(uint32_t val)
*/
#ifndef HPET_USE_CUSTOM_REG_ACCESS_FUNCS
/**
* @brief Write to the Timer Comparator Value Register
*
* This writes the specified value to the Timer Comparator
* Value Register of Timer #0.
*
* @param val Value to be written to the register
*/
static inline void hpet_timer_comparator_set(uint64_t val)
{
#if CONFIG_X86_64
sys_write64(val, TIMER0_COMPARATOR_LOW_REG);
#else
sys_write32((uint32_t)val, TIMER0_COMPARATOR_LOW_REG);
sys_write32((uint32_t)(val >> 32), TIMER0_COMPARATOR_HIGH_REG);
#endif
}
#endif /* HPET_USE_CUSTOM_REG_ACCESS_FUNCS */
#ifndef HPET_COUNTER_CLK_PERIOD
/* COUNTER_CLK_PERIOD (CLK_PERIOD_REG) is in femtoseconds (1e-15 sec) */
#define HPET_COUNTER_CLK_PERIOD (1000000000000000ULL)
#endif
/*
* HPET_INT_LEVEL_TRIGGER is used to set HPET interrupt as level trigger
* for ARM CPU with NVIC like EHL PSE, whose DTS interrupt setting
* has no "sense" cell.
*/
#if (DT_INST_IRQ_HAS_CELL(0, sense))
#ifdef HPET_INT_LEVEL_TRIGGER
__WARN("HPET_INT_LEVEL_TRIGGER has no effect, DTS setting is used instead")
#undef HPET_INT_LEVEL_TRIGGER
#endif
#if ((DT_INST_IRQ(0, sense) & IRQ_TYPE_LEVEL) == IRQ_TYPE_LEVEL)
#define HPET_INT_LEVEL_TRIGGER
#endif
#endif /* (DT_INST_IRQ_HAS_CELL(0, sense)) */
static __pinned_bss struct k_spinlock lock;
static __pinned_bss uint64_t last_count;
static __pinned_bss uint64_t last_tick;
static __pinned_bss uint32_t last_elapsed;
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
static __pinned_bss unsigned int cyc_per_tick;
#else
#define cyc_per_tick \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
#define HPET_MAX_TICKS ((int32_t)0x7fffffff)
#ifdef HPET_INT_LEVEL_TRIGGER
/**
* @brief Write to General Interrupt Status Register
*
* This is used to acknowledge and clear interrupt bits.
*
* @param val Value to be written to the register
*/
static inline void hpet_int_sts_set(uint32_t val)
{
sys_write32(val, INTR_STATUS_REG);
}
#endif
/* ensure the comparator is always set ahead of the current counter value */
static inline void hpet_timer_comparator_set_safe(uint64_t next)
{
hpet_timer_comparator_set(next);
uint64_t now = hpet_counter_get();
if (unlikely((int64_t)(next - now) <= 0)) {
uint32_t bump = 1;
do {
next = now + bump;
bump *= 2;
hpet_timer_comparator_set(next);
now = hpet_counter_get();
} while ((int64_t)(next - now) <= 0);
}
}
__isr
isr: Normalize usage of device instance through ISR The goal of this patch is to replace the 'void *' parameter by 'struct device *' if they use such variable or just 'const void *' on all relevant ISRs This will avoid not-so-nice const qualifier tweaks when device instances will be constant. Note that only the ISR passed to IRQ_CONNECT are of interest here. In order to do so, the script fix_isr.py below is necessary: from pathlib import Path import subprocess import pickle import mmap import sys import re import os cocci_template = """ @r_fix_isr_0 @ type ret_type; identifier P; identifier D; @@ -ret_type <!fn!>(void *P) +ret_type <!fn!>(const struct device *P) { ... ( const struct device *D = (const struct device *)P; | const struct device *D = P; ) ... } @r_fix_isr_1 @ type ret_type; identifier P; identifier D; @@ -ret_type <!fn!>(void *P) +ret_type <!fn!>(const struct device *P) { ... const struct device *D; ... ( D = (const struct device *)P; | D = P; ) ... } @r_fix_isr_2 @ type ret_type; identifier A; @@ -ret_type <!fn!>(void *A) +ret_type <!fn!>(const void *A) { ... } @r_fix_isr_3 @ const struct device *D; @@ -<!fn!>((void *)D); +<!fn!>(D); @r_fix_isr_4 @ type ret_type; identifier D; identifier P; @@ -ret_type <!fn!>(const struct device *P) +ret_type <!fn!>(const struct device *D) { ... ( -const struct device *D = (const struct device *)P; | -const struct device *D = P; ) ... } @r_fix_isr_5 @ type ret_type; identifier D; identifier P; @@ -ret_type <!fn!>(const struct device *P) +ret_type <!fn!>(const struct device *D) { ... -const struct device *D; ... ( -D = (const struct device *)P; | -D = P; ) ... } """ def find_isr(fn): db = [] data = None start = 0 try: with open(fn, 'r+') as f: data = str(mmap.mmap(f.fileno(), 0).read()) except Exception as e: return db while True: isr = "" irq = data.find('IRQ_CONNECT', start) while irq > -1: p = 1 arg = 1 p_o = data.find('(', irq) if p_o < 0: irq = -1 break; pos = p_o + 1 while p > 0: if data[pos] == ')': p -= 1 elif data[pos] == '(': p += 1 elif data[pos] == ',' and p == 1: arg += 1 if arg == 3: isr += data[pos] pos += 1 isr = isr.strip(',\\n\\t ') if isr not in db and len(isr) > 0: db.append(isr) start = pos break if irq < 0: break return db def patch_isr(fn, isr_list): if len(isr_list) <= 0: return for isr in isr_list: tmplt = cocci_template.replace('<!fn!>', isr) with open('/tmp/isr_fix.cocci', 'w') as f: f.write(tmplt) cmd = ['spatch', '--sp-file', '/tmp/isr_fix.cocci', '--in-place', fn] subprocess.run(cmd) def process_files(path): if path.is_file() and path.suffix in ['.h', '.c']: p = str(path.parent) + '/' + path.name isr_list = find_isr(p) patch_isr(p, isr_list) elif path.is_dir(): for p in path.iterdir(): process_files(p) if len(sys.argv) < 2: print("You need to provide a dir/file path") sys.exit(1) process_files(Path(sys.argv[1])) And is run: ./fix_isr.py <zephyr root directory> Finally, some files needed manual fixes such. Fixes #27399 Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
2020-06-17 14:58:56 +02:00
static void hpet_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = hpet_counter_get();
#ifdef HPET_INT_LEVEL_TRIGGER
/*
* Clear interrupt only if level trigger is selected.
* When edge trigger is selected, spec says only 0 can
* be written.
*/
hpet_int_sts_set(TIMER0_INT_STS);
#endif
if (IS_ENABLED(CONFIG_SMP) &&
IS_ENABLED(CONFIG_QEMU_TARGET)) {
/* Qemu in SMP mode has observed the clock going
* "backwards" relative to interrupts already received
* on the other CPU, despite the HPET being
* theoretically a global device.
*/
int64_t diff = (int64_t)(now - last_count);
if (last_count && diff < 0) {
now = last_count;
}
}
uint32_t dticks = (uint32_t)((now - last_count) / cyc_per_tick);
last_count += (uint64_t)dticks * cyc_per_tick;
last_tick += dticks;
last_elapsed = 0;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint64_t next = last_count + cyc_per_tick;
hpet_timer_comparator_set_safe(next);
}
k_spin_unlock(&lock, key);
sys_clock_announce(dticks);
}
__pinned_func
static void config_timer0(unsigned int irq)
{
uint32_t val = hpet_timer_conf_get();
/* 5-bit IRQ field starting at bit 9 */
val = (val & ~(0x1f << 9)) | ((irq & 0x1f) << 9);
#ifdef HPET_INT_LEVEL_TRIGGER
/* Set level trigger if selected */
val |= TIMER_CONF_INT_LEVEL;
#endif
val &= ~((uint32_t)(TIMER_CONF_MODE32 | TIMER_CONF_PERIODIC |
TIMER_CONF_FSB_EN));
val |= TIMER_CONF_INT_ENABLE;
hpet_timer_conf_set(val);
}
__boot_func
void smp_timer_init(void)
{
/* Noop, the HPET is a single system-wide device and it's
* configured to deliver interrupts to every CPU, so there's
* nothing to do at initialization on auxiliary CPUs.
*/
}
__pinned_func
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#if defined(CONFIG_TICKLESS_KERNEL)
uint32_t reg;
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
if (ticks == K_TICKS_FOREVER && idle) {
reg = hpet_gconf_get();
reg &= ~GCONF_ENABLE;
hpet_gconf_set(reg);
return;
}
ticks = ticks == K_TICKS_FOREVER ? HPET_MAX_TICKS : ticks;
ticks = CLAMP(ticks, 0, HPET_MAX_TICKS/2);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t cyc = (last_tick + last_elapsed + ticks) * cyc_per_tick;
hpet_timer_comparator_set_safe(cyc);
k_spin_unlock(&lock, key);
#endif
}
__pinned_func
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = hpet_counter_get();
uint32_t ret = (uint32_t)((now - last_count) / cyc_per_tick);
last_elapsed = ret;
k_spin_unlock(&lock, key);
return ret;
}
__pinned_func
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)hpet_counter_get();
}
__pinned_func
uint64_t sys_clock_cycle_get_64(void)
{
return hpet_counter_get();
}
__pinned_func
void sys_clock_idle_exit(void)
{
uint32_t reg;
reg = hpet_gconf_get();
reg |= GCONF_ENABLE;
hpet_gconf_set(reg);
}
__boot_func
init: remove the need for a dummy device pointer in SYS_INIT functions The init infrastructure, found in `init.h`, is currently used by: - `SYS_INIT`: to call functions before `main` - `DEVICE_*`: to initialize devices They are all sorted according to an initialization level + a priority. `SYS_INIT` calls are really orthogonal to devices, however, the required function signature requires a `const struct device *dev` as a first argument. The only reason for that is because the same init machinery is used by devices, so we have something like: ```c struct init_entry { int (*init)(const struct device *dev); /* only set by DEVICE_*, otherwise NULL */ const struct device *dev; } ``` As a result, we end up with such weird/ugly pattern: ```c static int my_init(const struct device *dev) { /* always NULL! add ARG_UNUSED to avoid compiler warning */ ARG_UNUSED(dev); ... } ``` This is really a result of poor internals isolation. This patch proposes a to make init entries more flexible so that they can accept sytem initialization calls like this: ```c static int my_init(void) { ... } ``` This is achieved using a union: ```c union init_function { /* for SYS_INIT, used when init_entry.dev == NULL */ int (*sys)(void); /* for DEVICE*, used when init_entry.dev != NULL */ int (*dev)(const struct device *dev); }; struct init_entry { /* stores init function (either for SYS_INIT or DEVICE*) union init_function init_fn; /* stores device pointer for DEVICE*, NULL for SYS_INIT. Allows * to know which union entry to call. */ const struct device *dev; } ``` This solution **does not increase ROM usage**, and allows to offer clean public APIs for both SYS_INIT and DEVICE*. Note that however, init machinery keeps a coupling with devices. **NOTE**: This is a breaking change! All `SYS_INIT` functions will need to be converted to the new signature. See the script offered in the following commit. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> init: convert SYS_INIT functions to the new signature Conversion scripted using scripts/utils/migrate_sys_init.py. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> manifest: update projects for SYS_INIT changes Update modules with updated SYS_INIT calls: - hal_ti - lvgl - sof - TraceRecorderSource Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> tests: devicetree: devices: adjust test Adjust test according to the recently introduced SYS_INIT infrastructure. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> tests: kernel: threads: adjust SYS_INIT call Adjust to the new signature: int (*init_fn)(void); Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2022-10-19 09:33:44 +02:00
static int sys_clock_driver_init(void)
{
extern int z_clock_hw_cycles_per_sec;
uint32_t hz, reg;
ARG_UNUSED(hz);
ARG_UNUSED(z_clock_hw_cycles_per_sec);
DEVICE_MMIO_TOPLEVEL_MAP(hpet_regs, K_MEM_CACHE_NONE);
#if DT_INST_IRQ_HAS_CELL(0, sense)
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
hpet_isr, 0, DT_INST_IRQ(0, sense));
#else
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
hpet_isr, 0, 0);
#endif
config_timer0(DT_INST_IRQN(0));
irq_enable(DT_INST_IRQN(0));
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
hz = (uint32_t)(HPET_COUNTER_CLK_PERIOD / hpet_counter_clk_period_get());
z_clock_hw_cycles_per_sec = hz;
cyc_per_tick = hz / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#endif
reg = hpet_gconf_get();
reg |= GCONF_ENABLE;
#if (DT_INST_PROP(0, no_legacy_irq) == 0)
/* Note: we set the legacy routing bit, because otherwise
* nothing in Zephyr disables the PIT which then fires
* interrupts into the same IRQ. But that means we're then
* forced to use IRQ2 contra the way the kconfig IRQ selection
* is supposed to work. Should fix this.
*/
reg |= GCONF_LR;
#endif
hpet_gconf_set(reg);
last_tick = hpet_counter_get() / cyc_per_tick;
last_count = last_tick * cyc_per_tick;
hpet_timer_comparator_set_safe(last_count + cyc_per_tick);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);