zephyr/drivers/can/can_nxp_s32_canxl.c

1179 lines
33 KiB
C
Raw Normal View History

/*
* Copyright 2022-2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/drivers/can.h>
#include <zephyr/drivers/can/transceiver.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/device.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <CanEXCEL_Ip_HwAccess.h>
#include <CanEXCEL_Ip_Irq.h>
#define DT_DRV_COMPAT nxp_s32_canxl
/*
* Convert from RX message buffer index to allocated filter ID and
* vice versa.
*/
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
#define RX_MBIDX_TO_ALLOC_IDX(x) (x)
#define ALLOC_IDX_TO_RXMB_IDX(x) (x)
#else
#define RX_MBIDX_TO_ALLOC_IDX(x) (x - CONFIG_CAN_NXP_S32_MAX_TX)
#define ALLOC_IDX_TO_RXMB_IDX(x) (x + CONFIG_CAN_NXP_S32_MAX_TX)
#endif
/*
* Convert from TX message buffer index to allocated TX ID and vice
* versa.
*/
#define TX_MBIDX_TO_ALLOC_IDX(x) (x)
#define ALLOC_IDX_TO_TXMB_IDX(x) (x)
#define CAN_NXP_S32_TIMEOUT_MS 1
#define CAN_NXP_S32_MAX_BITRATE 8000000
#define CAN_NXP_S32_DATA_LENGTH 64
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
/* RX FIFO depth is fixed to the maximum value */
#define CAN_NXP_S32_RX_FIFO_DEPTH 32
/* RX FIFO water mark equal 1 that allows the interrupt is generated after 1 message received */
#define CAN_NXP_S32_RX_FIFO_WATERMARK 1
#endif
#if defined(CONFIG_CAN_FD_MODE) && defined(CONFIG_CAN_NXP_S32_RX_FIFO)
#define CAN_NXP_S32_FD_MODE 1
#endif
LOG_MODULE_REGISTER(nxp_s32_canxl, CONFIG_CAN_LOG_LEVEL);
struct can_nxp_s32_config {
const struct can_driver_config common;
CANXL_SIC_Type *base_sic;
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
CANXL_RXFIFO_Type * base_rx_fifo;
CANXL_RXFIFO_CONTROL_Type *base_rx_fifo_ctrl;
#endif
uint8 instance;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
const struct pinctrl_dev_config *pin_cfg;
Canexcel_Ip_ConfigType *can_cfg;
void (*irq_config_func)(void);
};
struct can_nxp_s32_tx_callback {
Canexcel_Ip_DataInfoType tx_info;
can_tx_callback_t function;
void *arg;
};
struct can_nxp_s32_rx_callback {
struct can_filter filter;
#ifndef CONFIG_CAN_NXP_S32_RX_FIFO
Canexcel_Ip_DataInfoType rx_info;
#endif
can_rx_callback_t function;
void *arg;
};
struct can_nxp_s32_data {
struct can_driver_data common;
Canexcel_Ip_StateType *can_state;
ATOMIC_DEFINE(rx_allocs, CONFIG_CAN_NXP_S32_MAX_RX);
struct k_mutex rx_mutex;
struct can_nxp_s32_rx_callback rx_cbs[CONFIG_CAN_NXP_S32_MAX_RX];
#ifndef CONFIG_CAN_NXP_S32_RX_FIFO
Canexcel_RxFdMsg *rx_msg;
#endif
ATOMIC_DEFINE(tx_allocs, CONFIG_CAN_NXP_S32_MAX_TX);
struct k_sem tx_allocs_sem;
struct k_mutex tx_mutex;
struct can_nxp_s32_tx_callback tx_cbs[CONFIG_CAN_NXP_S32_MAX_TX];
Canexcel_TxFdMsgType *tx_msg;
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
Canexcel_Ip_RxFifoFilterID_ADDR * rx_fifo_filter;
Canexcel_RxFdMsg *rx_fifo;
#endif
struct can_timing timing;
#ifdef CAN_NXP_S32_FD_MODE
struct can_timing timing_data;
#endif
enum can_state state;
};
static int can_nxp_s32_get_capabilities(const struct device *dev, can_mode_t *cap)
{
ARG_UNUSED(dev);
*cap = CAN_MODE_NORMAL | CAN_MODE_LOOPBACK | CAN_MODE_LISTENONLY;
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
if (IS_ENABLED(CONFIG_CAN_MANUAL_RECOVERY_MODE)) {
*cap |= CAN_MODE_MANUAL_RECOVERY;
}
if (IS_ENABLED(CAN_NXP_S32_FD_MODE)) {
*cap |= CAN_MODE_FD;
}
return 0;
}
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
static void can_nxp_s32_config_rx_fifo_filter(const struct device *dev, int filter_id)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
/* Lock the RxFIFO by System by reading register */
(void)config->base_rx_fifo_ctrl->RXFSYSLOCK;
CanXL_ConfigIDFilter(config->base_rx_fifo,
&data->rx_fifo_filter[filter_id], filter_id);
if ((config->base_rx_fifo_ctrl->RXFCSTA & CANXL_RXFIFO_CONTROL_RXFCSTA_SYSLOCK_MASK)
== CANXL_RXFIFO_CONTROL_RXFCSTA_SYSLOCK_MASK) {
/* Clear the sys lock to enable transfers */
config->base_rx_fifo_ctrl->RXFSYSLOCK =
CANXL_RXFIFO_CONTROL_RXFSYSLOCK_SYSLOCK_MASK;
}
}
/* Get the RxFiFO filter matched with the received RxFIFO message queue */
static inline int can_nxp_s32_get_rx_fifo_filter(struct can_nxp_s32_data *data)
{
int alloc = -ENOSPC;
uint32_t mask;
for (int filter_id = 0; filter_id < CONFIG_CAN_NXP_S32_MAX_RX; filter_id++) {
mask = data->rx_fifo_filter[filter_id].idAddrFilterL;
if (mask == 0) {
continue;
}
if ((data->rx_fifo[0].Header.Id & mask) ==
(data->rx_fifo_filter[filter_id].idAddrFilterH & mask)) {
alloc = filter_id;
break;
}
}
return alloc;
}
#endif
static int can_nxp_s32_start(const struct device *dev)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
int err;
if (data->common.started) {
return -EALREADY;
}
if (config->common.phy != NULL) {
err = can_transceiver_enable(config->common.phy, data->common.mode);
if (err != 0) {
LOG_ERR("failed to enable CAN transceiver (err %d)", err);
return err;
}
}
data->common.started = true;
return 0;
}
static int can_nxp_s32_stop(const struct device *dev)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
can_tx_callback_t function;
void *arg;
int alloc;
int err;
if (!data->common.started) {
return -EALREADY;
}
data->common.started = false;
/* Abort any pending TX frames before entering freeze mode */
for (alloc = 0; alloc < CONFIG_CAN_NXP_S32_MAX_TX; alloc++) {
function = data->tx_cbs[alloc].function;
arg = data->tx_cbs[alloc].arg;
if (atomic_test_and_clear_bit(data->tx_allocs, alloc)) {
if (Canexcel_Ip_DeactivateMD(config->instance,
ALLOC_IDX_TO_TXMB_IDX(alloc))) {
LOG_ERR("Can't abort message !");
};
function(dev, -ENETDOWN, arg);
k_sem_give(&data->tx_allocs_sem);
}
}
if (config->common.phy != NULL) {
err = can_transceiver_disable(config->common.phy);
if (err != 0) {
LOG_ERR("failed to disable CAN transceiver (err %d)", err);
return err;
}
}
return 0;
}
static int can_nxp_s32_set_mode(const struct device *dev, can_mode_t mode)
{
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
can_mode_t supported = CAN_MODE_LOOPBACK | CAN_MODE_LISTENONLY;
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
Canexcel_Ip_ModesType can_nxp_s32_mode = CAN_MODE_NORMAL;
bool canfd = false;
bool brs = false;
if (data->common.started) {
return -EBUSY;
}
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
if (IS_ENABLED(CONFIG_CAN_MANUAL_RECOVERY_MODE)) {
supported |= CAN_MODE_MANUAL_RECOVERY;
}
if (IS_ENABLED(CAN_NXP_S32_FD_MODE)) {
supported |= CAN_MODE_FD;
}
if ((mode & ~(supported)) != 0) {
LOG_ERR("unsupported mode: 0x%08x", mode);
return -ENOTSUP;
}
if ((mode & (CAN_MODE_LOOPBACK | CAN_MODE_LISTENONLY))
== (CAN_MODE_LOOPBACK | CAN_MODE_LISTENONLY)) {
LOG_ERR("unsupported mode loopback and "
"mode listen-only at the same time: 0x%08x", mode);
return -ENOTSUP;
}
canfd = !!(mode & CAN_MODE_FD);
brs = canfd;
if (mode & CAN_MODE_LISTENONLY) {
can_nxp_s32_mode = CANEXCEL_LISTEN_ONLY_MODE;
} else if (mode & CAN_MODE_LOOPBACK) {
can_nxp_s32_mode = CANEXCEL_LOOPBACK_MODE;
}
Canexcel_Ip_EnterFreezeMode(config->instance);
CanXL_SetFDEnabled(config->base_sic, canfd, brs);
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
if (IS_ENABLED(CONFIG_CAN_MANUAL_RECOVERY_MODE)) {
Canexcel_Ip_StatusType status;
uint32_t options = 0U;
if ((mode & CAN_MODE_MANUAL_RECOVERY) == 0U) {
options = CANXL_IP_BUSOFF_RECOVERY_U32;
}
status = CanXL_ConfigCtrlOptions(config->base_sic, options);
if (status != CANEXCEL_STATUS_SUCCESS) {
return -EIO;
}
}
CanXL_SetOperationMode(config->base_sic, can_nxp_s32_mode);
Canexcel_Ip_ExitFreezeMode(config->instance);
data->common.mode = mode;
return 0;
}
static int can_nxp_s32_get_core_clock(const struct device *dev, uint32_t *rate)
{
const struct can_nxp_s32_config *config = dev->config;
__ASSERT_NO_MSG(rate != NULL);
return clock_control_get_rate(config->clock_dev, config->clock_subsys, rate);
}
static int can_nxp_s32_get_max_filters(const struct device *dev, bool ide)
{
ARG_UNUSED(ide);
return CONFIG_CAN_NXP_S32_MAX_RX;
}
static int can_nxp_s32_get_state(const struct device *dev, enum can_state *state,
struct can_bus_err_cnt *err_cnt)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
uint32_t sys_status = config->base_sic->SYSS;
if (state) {
if (!data->common.started) {
*state = CAN_STATE_STOPPED;
} else {
if (sys_status & CANXL_SIC_SYSS_CBOFF_MASK) {
*state = CAN_STATE_BUS_OFF;
} else if (sys_status & CANXL_SIC_SYSS_CPASERR_MASK) {
*state = CAN_STATE_ERROR_PASSIVE;
} else if (sys_status & (CANXL_SIC_SYSS_CRXWRN_MASK
| CANXL_SIC_SYSS_CTXWRN_MASK)) {
*state = CAN_STATE_ERROR_WARNING;
} else {
*state = CAN_STATE_ERROR_ACTIVE;
}
}
}
if (err_cnt) {
/* NXP S32 CANXL HAL is not supported error counter */
err_cnt->tx_err_cnt = 0;
err_cnt->rx_err_cnt = 0;
}
return 0;
}
static void can_nxp_s32_set_state_change_callback(const struct device *dev,
can_state_change_callback_t callback,
void *user_data)
{
struct can_nxp_s32_data *data = dev->data;
data->common.state_change_cb = callback;
data->common.state_change_cb_user_data = user_data;
}
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
#ifdef CONFIG_CAN_MANUAL_RECOVERY_MODE
static int can_nxp_s32_recover(const struct device *dev, k_timeout_t timeout)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
enum can_state state;
uint64_t start_time;
int ret = 0;
if (!data->common.started) {
return -ENETDOWN;
}
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
if ((data->common.mode & CAN_MODE_MANUAL_RECOVERY) == 0U) {
return -ENOTSUP;
}
can_nxp_s32_get_state(dev, &state, NULL);
if (state != CAN_STATE_BUS_OFF) {
return 0;
}
start_time = k_uptime_ticks();
config->base_sic->BCFG1 &= (~CANXL_SIC_BCFG1_ABRDIS_MASK);
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
can_nxp_s32_get_state(dev, &state, NULL);
while (state == CAN_STATE_BUS_OFF) {
if (!K_TIMEOUT_EQ(timeout, K_FOREVER) &&
k_uptime_ticks() - start_time >= timeout.ticks) {
ret = -EAGAIN;
}
can_nxp_s32_get_state(dev, &state, NULL);
}
}
config->base_sic->BCFG1 |= CANXL_SIC_BCFG1_ABRDIS_MASK;
return ret;
}
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
#endif /* CONFIG_CAN_MANUAL_RECOVERY_MODE */
static void can_nxp_s32_remove_rx_filter(const struct device *dev, int filter_id)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
int mb_indx = ALLOC_IDX_TO_RXMB_IDX(filter_id);
if (filter_id < 0 || filter_id >= CONFIG_CAN_NXP_S32_MAX_RX) {
LOG_ERR("filter ID %d out of bounds", filter_id);
return;
}
k_mutex_lock(&data->rx_mutex, K_FOREVER);
if (atomic_test_and_clear_bit(data->rx_allocs, filter_id)) {
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
data->rx_fifo_filter[mb_indx].idAddrFilterL = 0;
data->rx_fifo_filter[mb_indx].idAddrFilterH = 0;
Canexcel_Ip_EnterFreezeMode(config->instance);
can_nxp_s32_config_rx_fifo_filter(dev, mb_indx);
Canexcel_Ip_ExitFreezeMode(config->instance);
#else
if (Canexcel_Ip_DeactivateMD(config->instance, mb_indx)) {
LOG_ERR("Can't abort message !");
};
#endif
data->rx_cbs[filter_id].function = NULL;
data->rx_cbs[filter_id].arg = NULL;
data->rx_cbs[filter_id].filter = (struct can_filter){0};
} else {
LOG_WRN("Filter ID %d already detached", filter_id);
}
k_mutex_unlock(&data->rx_mutex);
}
static int can_nxp_s32_add_rx_filter(const struct device *dev,
can_rx_callback_t callback,
void *user_data,
const struct can_filter *filter)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
int alloc = -ENOSPC;
int mb_indx;
uint32_t mask;
if ((filter->flags & ~(CAN_FILTER_IDE)) != 0) {
LOG_ERR("unsupported CAN filter flags 0x%02x", filter->flags);
return -ENOTSUP;
}
k_mutex_lock(&data->rx_mutex, K_FOREVER);
/* Find and allocate RX message buffer */
for (int i = 0; i < CONFIG_CAN_NXP_S32_MAX_RX; i++) {
if (!atomic_test_and_set_bit(data->rx_allocs, i)) {
alloc = i;
break;
}
}
if (alloc == -ENOSPC) {
LOG_ERR("No free filter bank found");
goto unlock;
}
data->rx_cbs[alloc].function = callback;
data->rx_cbs[alloc].arg = user_data;
data->rx_cbs[alloc].filter = *filter;
/* Set Rx Mb individual mask for */
mb_indx = ALLOC_IDX_TO_RXMB_IDX(alloc);
if (!!(filter->flags & CAN_FILTER_IDE)) {
mask = filter->mask & CANXL_IP_ID_EXT_MASK;
} else {
mask = (filter->mask << CANXL_IP_ID_STD_SHIFT) & CANXL_IP_ID_STD_MASK;
}
#ifndef CONFIG_CAN_ACCEPT_RTR
mask |= CANXL_MSG_DESCRIPTORS_MDFLT1FD_RTRMSK_MASK;
#endif /* !CONFIG_CAN_ACCEPT_RTR */
Canexcel_Ip_EnterFreezeMode(config->instance);
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
uint32_t filter_id;
if (!!(filter->flags & CAN_FILTER_IDE)) {
filter_id = filter->id & CANXL_IP_ID_EXT_MASK;
} else {
filter_id = (filter->id << CANXL_IP_ID_STD_SHIFT) & CANXL_IP_ID_STD_MASK;
}
data->rx_fifo_filter[mb_indx].filterType = CANEXCEL_IP_RX_FIFO_MASK_FILTER;
data->rx_fifo_filter[mb_indx].idAddrFilterL = mask;
data->rx_fifo_filter[mb_indx].idAddrFilterH = filter_id;
can_nxp_s32_config_rx_fifo_filter(dev, mb_indx);
#else
data->rx_cbs[alloc].rx_info = (Canexcel_Ip_DataInfoType) {
.frame = CANEXCEL_CLASIC_FRAME,
.idType = !!(filter->flags & CAN_FILTER_IDE) ?
CANEXCEL_MSG_ID_EXT : CANEXCEL_MSG_ID_STD,
.dataLength = CAN_NXP_S32_DATA_LENGTH,
};
Canexcel_Ip_SetRxIndividualMask(config->instance, mb_indx,
data->rx_cbs[alloc].rx_info.frame, mask);
Canexcel_Ip_ConfigRx(config->instance, mb_indx, filter->id,
&data->rx_cbs[alloc].rx_info);
Canexcel_Ip_ReceiveFD(config->instance, mb_indx, &data->rx_msg[alloc], FALSE);
#endif
Canexcel_Ip_ExitFreezeMode(config->instance);
unlock:
k_mutex_unlock(&data->rx_mutex);
return alloc;
}
static int can_nxp_s32_send(const struct device *dev,
const struct can_frame *frame,
k_timeout_t timeout,
can_tx_callback_t callback, void *user_data)
{
const struct can_nxp_s32_config *config = dev->config;
uint8_t data_length = can_dlc_to_bytes(frame->dlc);
struct can_nxp_s32_data *data = dev->data;
Canexcel_Ip_StatusType status;
enum can_state state;
int alloc, mb_indx;
#ifdef CAN_NXP_S32_FD_MODE
if ((frame->flags & ~(CAN_FRAME_IDE | CAN_FRAME_FDF | CAN_FRAME_BRS)) != 0) {
LOG_ERR("unsupported CAN frame flags 0x%02x", frame->flags);
return -ENOTSUP;
}
if ((frame->flags & CAN_FRAME_FDF) != 0 &&
(config->base_sic->BCFG2 & CANXL_SIC_BCFG2_FDEN_MASK) == 0) {
LOG_ERR("CAN FD format not supported in non-FD mode");
return -ENOTSUP;
}
if ((frame->flags & CAN_FRAME_BRS) != 0 &&
~(config->base_sic->BCFG1 & CANXL_SIC_BCFG1_FDRSDIS_MASK) == 0) {
LOG_ERR("CAN FD BRS not supported in non-FD mode");
return -ENOTSUP;
}
#else
if ((frame->flags & ~CAN_FRAME_IDE) != 0) {
LOG_ERR("unsupported CAN frame flags 0x%02x", frame->flags);
return -ENOTSUP;
}
#endif
if (data_length > sizeof(frame->data)) {
LOG_ERR("data length (%d) > max frame data length (%d)",
data_length, sizeof(frame->data));
return -EINVAL;
}
if ((frame->flags & CAN_FRAME_FDF) == 0) {
if (frame->dlc > CAN_MAX_DLC) {
LOG_ERR("DLC of %d for non-FD format frame", frame->dlc);
return -EINVAL;
}
#ifdef CAN_NXP_S32_FD_MODE
} else {
if (frame->dlc > CANFD_MAX_DLC) {
LOG_ERR("DLC of %d for CAN FD format frame", frame->dlc);
return -EINVAL;
}
#endif
}
if (!data->common.started) {
return -ENETDOWN;
}
can_nxp_s32_get_state(dev, &state, NULL);
if (state == CAN_STATE_BUS_OFF) {
LOG_ERR("Transmit failed, bus-off");
return -ENETUNREACH;
}
if (k_sem_take(&data->tx_allocs_sem, timeout) != 0) {
return -EAGAIN;
}
for (alloc = 0; alloc < CONFIG_CAN_NXP_S32_MAX_TX; alloc++) {
if (!atomic_test_and_set_bit(data->tx_allocs, alloc)) {
break;
}
}
data->tx_cbs[alloc].function = callback;
data->tx_cbs[alloc].arg = user_data;
mb_indx = ALLOC_IDX_TO_TXMB_IDX(alloc);
data->tx_cbs[alloc].tx_info = (Canexcel_Ip_DataInfoType) {
.frame = !!(frame->flags & CAN_FRAME_FDF) ?
CANEXCEL_FD_FRAME : CANEXCEL_CLASIC_FRAME,
.enable_brs = !!(frame->flags & CAN_FRAME_BRS) ? TRUE : FALSE,
.idType = !!(frame->flags & CAN_FRAME_IDE) ?
CANEXCEL_MSG_ID_EXT : CANEXCEL_MSG_ID_STD,
.priority = 0,
.fd_padding = 0,
.dataLength = data_length,
.is_polling = FALSE
};
LOG_DBG("%s: Sending %d bytes Tx Mb %d, "
"Tx Id: 0x%x, "
"Id type: %s %s %s %s",
dev->name, data_length,
mb_indx, frame->id,
!!(frame->flags & CAN_FRAME_IDE) ?
"extended" : "standard",
!!(frame->flags & CAN_FRAME_RTR) ? "RTR" : "",
!!(frame->flags & CAN_FRAME_FDF) ? "FD frame" : "",
!!(frame->flags & CAN_FRAME_BRS) ? "BRS" : "");
k_mutex_lock(&data->tx_mutex, K_FOREVER);
/* Send MB Interrupt */
status = Canexcel_Ip_SendFDMsg(config->instance, mb_indx, &data->tx_cbs[alloc].tx_info,
frame->id, (uint8_t *)&frame->data, &data->tx_msg[alloc]);
k_mutex_unlock(&data->tx_mutex);
if (status != CANEXCEL_STATUS_SUCCESS) {
return -EIO;
}
return 0;
}
static void nxp_s32_zcan_timing_to_canxl_timing(const struct can_timing *timing,
Canexcel_Ip_TimeSegmentType *canxl_timing)
{
LOG_DBG("propSeg: %d, phase_seg1: %d, phase_seg2: %d, prescaler: %d, sjw: %d",
timing->prop_seg, timing->phase_seg1, timing->phase_seg2,
timing->prescaler, timing->sjw);
canxl_timing->propSeg = timing->prop_seg - 1U;
canxl_timing->phaseSeg1 = timing->phase_seg1 - 1U;
canxl_timing->phaseSeg2 = timing->phase_seg2 - 1U;
canxl_timing->preDivider = timing->prescaler - 1U;
canxl_timing->rJumpwidth = timing->sjw - 1U;
}
static int can_nxp_s32_set_timing(const struct device *dev,
const struct can_timing *timing)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
Canexcel_Ip_TimeSegmentType can_time_segment = {0};
if (data->common.started) {
return -EBUSY;
}
nxp_s32_zcan_timing_to_canxl_timing(timing, &can_time_segment);
/* Set timing for CAN instance*/
CanXL_SetBaudRate(config->base_sic, &can_time_segment);
return 0;
}
#ifdef CAN_NXP_S32_FD_MODE
static int can_nxp_s32_set_timing_data(const struct device *dev,
const struct can_timing *timing_data)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
Canexcel_Ip_TimeSegmentType can_fd_time_segment = {0};
if (data->common.started) {
return -EBUSY;
}
nxp_s32_zcan_timing_to_canxl_timing(timing_data, &can_fd_time_segment);
/* Set timing for CAN FD instance*/
CanXL_SetFDBaudRate(config->base_sic, &can_fd_time_segment);
return 0;
}
#endif
static void can_nxp_s32_err_callback(const struct device *dev,
Canexcel_Ip_EventType eventType,
uint32 u32SysStatus,
const Canexcel_Ip_StateType *canexcelState)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
enum can_state state;
struct can_bus_err_cnt err_cnt;
void *cb_data = data->common.state_change_cb_user_data;
can_tx_callback_t function;
int alloc;
void *arg;
switch (eventType) {
case CANEXCEL_EVENT_TX_WARNING:
LOG_DBG("Tx Warning (error 0x%x)", u32SysStatus);
break;
case CANEXCEL_EVENT_RX_WARNING:
LOG_DBG("Rx Warning (error 0x%x)", u32SysStatus);
break;
case CANEXCEL_EVENT_BUSOFF:
LOG_DBG("Bus Off (error 0x%x)", u32SysStatus);
break;
case CANEXCEL_EVENT_ERROR:
LOG_DBG("Error Format Frames (error 0x%x)", u32SysStatus);
break;
case CANEXCEL_EVENT_ERROR_FD:
LOG_DBG("Error Data Phase (error 0x%x)", u32SysStatus);
break;
case CANEXCEL_EVENT_PASSIVE:
LOG_DBG("Error Passive (error 0x%x)", u32SysStatus);
break;
default:
break;
}
can_nxp_s32_get_state(dev, &state, &err_cnt);
if (data->state != state) {
data->state = state;
if (data->common.state_change_cb) {
data->common.state_change_cb(dev, state, err_cnt, cb_data);
}
}
if (state == CAN_STATE_BUS_OFF) {
/* Abort any pending TX frames in case of bus-off */
for (alloc = 0; alloc < CONFIG_CAN_NXP_S32_MAX_TX; alloc++) {
/* Copy callback function and argument before clearing bit */
function = data->tx_cbs[alloc].function;
arg = data->tx_cbs[alloc].arg;
if (atomic_test_and_clear_bit(data->tx_allocs, alloc)) {
if (Canexcel_Ip_DeactivateMD(config->instance,
ALLOC_IDX_TO_TXMB_IDX(alloc))) {
LOG_ERR("Can't abort message !");
};
function(dev, -ENETUNREACH, arg);
k_sem_give(&data->tx_allocs_sem);
}
}
}
}
static void nxp_s32_msg_data_to_zcan_frame(Canexcel_RxFdMsg msg_data,
struct can_frame *frame)
{
memset(frame, 0, sizeof(*frame));
if (!!(msg_data.Header.Id & CANXL_TX_HEADER_IDE_MASK)) {
frame->flags |= CAN_FRAME_IDE;
}
if (!!(frame->flags & CAN_FRAME_IDE)) {
frame->id = (msg_data.Header.Id & CANXL_IP_ID_EXT_MASK);
} else {
frame->id = ((msg_data.Header.Id & CANXL_IP_ID_STD_MASK)
>> CANXL_IP_ID_STD_SHIFT);
}
frame->dlc = (msg_data.Header.Control & CANXL_TX_HEADER_DLC_MASK)
>> CANXL_TX_HEADER_DLC_SHIFT;
if (!!(msg_data.Header.Control & CANXL_TX_HEADER_FDF_MASK)) {
frame->flags |= CAN_FRAME_FDF;
}
if (!!(msg_data.Header.Control & CANXL_TX_HEADER_BRS_MASK)) {
frame->flags |= CAN_FRAME_BRS;
}
if (!!(msg_data.Header.Id & CANXL_TX_HEADER_RTR_MASK)) {
frame->flags |= CAN_FRAME_RTR;
} else {
memcpy(frame->data, msg_data.data, can_dlc_to_bytes(frame->dlc));
}
#ifdef CONFIG_CAN_RX_TIMESTAMP
frame->timestamp = msg_data.timeStampL;
#endif /* CAN_RX_TIMESTAMP */
}
static void can_nxp_s32_ctrl_callback(const struct device *dev,
Canexcel_Ip_EventType eventType, uint32 buffidx,
const Canexcel_Ip_StateType *canexcelState)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
struct can_frame frame = {0};
can_tx_callback_t tx_func;
can_rx_callback_t rx_func;
int alloc;
if (eventType == CANEXCEL_EVENT_TX_COMPLETE) {
alloc = TX_MBIDX_TO_ALLOC_IDX(buffidx);
tx_func = data->tx_cbs[alloc].function;
LOG_DBG("%s: Sent Tx Mb %d", dev->name, buffidx);
if (atomic_test_and_clear_bit(data->tx_allocs, alloc)) {
tx_func(dev, 0, data->tx_cbs[alloc].arg);
k_sem_give(&data->tx_allocs_sem);
}
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
} else if (eventType == CANEXCEL_EVENT_RXFIFO_COMPLETE) {
alloc = can_nxp_s32_get_rx_fifo_filter(data);
if (alloc != -ENOSPC) {
rx_func = data->rx_cbs[alloc].function;
if (atomic_test_bit(data->rx_allocs, alloc)) {
nxp_s32_msg_data_to_zcan_frame(data->rx_fifo[0], &frame);
LOG_DBG("%s: Received %d bytes Rx FiFo %d, "
"Rx Id: 0x%x, "
"Id type: %s %s %s %s",
dev->name, can_dlc_to_bytes(frame.dlc),
alloc, frame.id,
!!(frame.flags & CAN_FRAME_IDE) ?
"extended" : "standard",
!!(frame.flags & CAN_FRAME_RTR) ? "RTR" : "",
!!(frame.flags & CAN_FRAME_FDF) ? "FD frame" : "",
!!(frame.flags & CAN_FRAME_BRS) ? "BRS" : "");
rx_func(dev, &frame, data->rx_cbs[alloc].arg);
}
}
/* Pop 1 (= RXFSYSPOP + 1) received RxFIFO message queue */
config->base_rx_fifo_ctrl->RXFSYSPOP = 0;
#else
} else if (eventType == CANEXCEL_EVENT_RX_COMPLETE) {
alloc = RX_MBIDX_TO_ALLOC_IDX(buffidx);
rx_func = data->rx_cbs[alloc].function;
if (atomic_test_bit(data->rx_allocs, alloc)) {
nxp_s32_msg_data_to_zcan_frame(data->rx_msg[alloc], &frame);
LOG_DBG("%s: Received %d bytes Rx Mb %d, "
"Rx Id: 0x%x, "
"Id type: %s %s %s %s",
dev->name, can_dlc_to_bytes(frame.dlc),
buffidx, frame.id,
!!(frame.flags & CAN_FRAME_IDE) ?
"extended" : "standard",
!!(frame.flags & CAN_FRAME_RTR) ? "RTR" : "",
!!(frame.flags & CAN_FRAME_FDF) ? "FD frame" : "",
!!(frame.flags & CAN_FRAME_BRS) ? "BRS" : "");
rx_func(dev, &frame, data->rx_cbs[alloc].arg);
if (Canexcel_Ip_ReceiveFD(config->instance, buffidx,
&data->rx_msg[alloc], FALSE) != CANEXCEL_STATUS_SUCCESS) {
LOG_ERR("MB %d is not ready for receiving next message", buffidx);
}
}
#endif
}
}
static int can_nxp_s32_init(const struct device *dev)
{
const struct can_nxp_s32_config *config = dev->config;
struct can_nxp_s32_data *data = dev->data;
int err;
#ifdef CONFIG_CAN_RX_TIMESTAMP
Canexcel_Ip_TimeStampConf_Type time_stamp = {
.ts64bit = FALSE, /* Time stamp size is 32 bits */
.capture = CANEXCEL_TIMESTAMPCAPTURE_END,
.src = CANTBS_TIMESURCE_BUS1
};
#endif
if (config->common.phy != NULL) {
if (!device_is_ready(config->common.phy)) {
LOG_ERR("CAN transceiver not ready");
return -ENODEV;
}
}
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("Clock control device not ready");
return -ENODEV;
}
err = clock_control_on(config->clock_dev, config->clock_subsys);
if (err) {
LOG_ERR("Failed to enable clock");
return err;
}
k_mutex_init(&data->rx_mutex);
k_mutex_init(&data->tx_mutex);
k_sem_init(&data->tx_allocs_sem, CONFIG_CAN_NXP_S32_MAX_TX, CONFIG_CAN_NXP_S32_MAX_TX);
err = pinctrl_apply_state(config->pin_cfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
/* Enable CANXL HW */
IP_MC_RGM->PRST_0[0].PRST_0 &=
~(MC_RGM_PRST_0_PERIPH_16_RST_MASK | MC_RGM_PRST_0_PERIPH_24_RST_MASK);
err = can_calc_timing(dev, &data->timing, config->common.bus_speed,
config->common.sample_point);
if (err == -EINVAL) {
LOG_ERR("Can't find timing for given param");
return -EIO;
}
if (err > 0) {
LOG_WRN("Sample-point error : %d", err);
}
LOG_DBG("Setting CAN bitrate %d:", config->common.bus_speed);
nxp_s32_zcan_timing_to_canxl_timing(&data->timing, &config->can_cfg->bitrate);
#ifdef CAN_NXP_S32_FD_MODE
err = can_calc_timing_data(dev, &data->timing_data, config->common.bus_speed_data,
config->common.sample_point_data);
if (err == -EINVAL) {
LOG_ERR("Can't find timing data for given param");
return -EIO;
}
if (err > 0) {
LOG_WRN("Sample-point-data err : %d", err);
}
LOG_DBG("Setting CAN FD bitrate %d:", config->common.bus_speed_data);
nxp_s32_zcan_timing_to_canxl_timing(&data->timing_data, &config->can_cfg->Fd_bitrate);
#endif
/* Initialize CAN structure */
Canexcel_Ip_Init(config->instance, config->can_cfg, data->can_state);
/* Configure time stamp */
#ifdef CONFIG_CAN_RX_TIMESTAMP
Canexcel_Ip_ConfigTimeStamp(config->instance, &time_stamp);
#endif
/* Enable Interrupt */
Canexcel_Ip_EnableInterrupts(config->instance);
/* Enable Error Interrupt */
CanXL_SetErrIntCmd(config->base_sic, CANXL_INT_RX_WARNING, TRUE);
CanXL_SetErrIntCmd(config->base_sic, CANXL_INT_TX_WARNING, TRUE);
CanXL_SetErrIntCmd(config->base_sic, CANXL_INT_ERR, TRUE);
CanXL_SetErrIntCmd(config->base_sic, CANXL_INT_BUSOFF, TRUE);
CanXL_SetErrIntCmd(config->base_sic, CANXL_INT_PASIVE_ERR, TRUE);
#ifdef CONFIG_CAN_NXP_S32_RX_FIFO
CanXL_SetErrIntCmd(config->base_sic, CANXL_INT_RXFIFO_OVER, TRUE);
/* Configure number of ID acceptance filters*/
config->base_rx_fifo->AFCFG =
CANXL_RXFIFO_AFCFG_ACPTID(CONFIG_CAN_NXP_S32_MAX_RX - 1);
#endif
config->irq_config_func();
can_nxp_s32_get_state(dev, &data->state, NULL);
return 0;
}
static void can_nxp_s32_isr_rx_tx(const struct device *dev)
{
const struct can_nxp_s32_config *config = dev->config;
Canexcel_Ip_RxTxIRQHandler(config->instance);
}
static void can_nxp_s32_isr_error(const struct device *dev)
{
const struct can_nxp_s32_config *config = dev->config;
Canexcel_Ip_ErrIRQHandler(config->instance);
}
static const struct can_driver_api can_nxp_s32_driver_api = {
.get_capabilities = can_nxp_s32_get_capabilities,
.start = can_nxp_s32_start,
.stop = can_nxp_s32_stop,
.set_mode = can_nxp_s32_set_mode,
.set_timing = can_nxp_s32_set_timing,
.send = can_nxp_s32_send,
.add_rx_filter = can_nxp_s32_add_rx_filter,
.remove_rx_filter = can_nxp_s32_remove_rx_filter,
.get_state = can_nxp_s32_get_state,
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
#ifdef CONFIG_CAN_MANUAL_RECOVERY_MODE
.recover = can_nxp_s32_recover,
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
#endif /* CONFIG_CAN_MANUAL_RECOVERY_MODE */
.set_state_change_callback = can_nxp_s32_set_state_change_callback,
.get_core_clock = can_nxp_s32_get_core_clock,
.get_max_filters = can_nxp_s32_get_max_filters,
.timing_min = {
.sjw = 0x01,
.prop_seg = 0x01,
.phase_seg1 = 0x01,
.phase_seg2 = 0x02,
.prescaler = 0x01
},
.timing_max = {
.sjw = 0x04,
.prop_seg = 0x08,
.phase_seg1 = 0x08,
.phase_seg2 = 0x08,
.prescaler = 0x100
},
#ifdef CAN_NXP_S32_FD_MODE
.set_timing_data = can_nxp_s32_set_timing_data,
.timing_data_min = {
.sjw = 0x01,
.prop_seg = 0x01,
.phase_seg1 = 0x01,
.phase_seg2 = 0x02,
.prescaler = 0x01
},
.timing_data_max = {
.sjw = 0x04,
.prop_seg = 0x08,
.phase_seg1 = 0x08,
.phase_seg2 = 0x08,
.prescaler = 0x100
}
#endif
};
#define _CAN_NXP_S32_IRQ_CONFIG(node_id, prop, idx) \
do { \
IRQ_CONNECT(DT_IRQ_BY_IDX(node_id, idx, irq), \
DT_IRQ_BY_IDX(node_id, idx, priority), \
UTIL_CAT(can_nxp_s32_isr_, \
DT_STRING_TOKEN_BY_IDX(node_id, prop, idx)), \
DEVICE_DT_GET(node_id), \
DT_IRQ_BY_IDX(node_id, idx, flags)); \
irq_enable(DT_IRQ_BY_IDX(node_id, idx, irq)); \
} while (false);
#define CAN_NXP_S32_IRQ_CONFIG(n) \
static void can_irq_config_##n(void) \
{ \
DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, _CAN_NXP_S32_IRQ_CONFIG); \
}
#define CAN_NXP_S32_ERR_CALLBACK(n) \
void nxp_s32_can_##n##_err_callback(uint8 instance, Canexcel_Ip_EventType eventType,\
uint32 u32SysStatus, const Canexcel_Ip_StateType *canexcelState) \
{ \
const struct device *dev = DEVICE_DT_INST_GET(n); \
can_nxp_s32_err_callback(dev, eventType, u32SysStatus, canexcelState); \
}
#define CAN_NXP_S32_CTRL_CALLBACK(n) \
void nxp_s32_can_##n##_ctrl_callback(uint8 instance, Canexcel_Ip_EventType eventType,\
uint32 buffIdx, const Canexcel_Ip_StateType *canexcelState) \
{ \
const struct device *dev = DEVICE_DT_INST_GET(n); \
can_nxp_s32_ctrl_callback(dev, eventType, buffIdx, canexcelState); \
}
#if defined(CAN_NXP_S32_FD_MODE)
#define CAN_NXP_S32_BRS 1
#else
#define CAN_NXP_S32_BRS 0
#endif
#define CAN_NXP_S32_HW_INSTANCE_CHECK(i, n) \
((DT_INST_REG_ADDR(n) == IP_CANXL_##i##__SIC_BASE) ? i : 0)
#define CAN_NXP_S32_HW_INSTANCE(n) \
LISTIFY(__DEBRACKET CANXL_SIC_INSTANCE_COUNT, CAN_NXP_S32_HW_INSTANCE_CHECK, (|), n)
#define CAN_NXP_S32_INIT_DEVICE(n) \
CAN_NXP_S32_CTRL_CALLBACK(n) \
CAN_NXP_S32_ERR_CALLBACK(n) \
CAN_NXP_S32_IRQ_CONFIG(n) \
PINCTRL_DT_INST_DEFINE(n); \
\
__nocache Canexcel_Ip_StateType can_nxp_s32_state##n; \
__nocache Canexcel_TxFdMsgType tx_msg##n[CONFIG_CAN_NXP_S32_MAX_TX]; \
IF_DISABLED(CONFIG_CAN_NXP_S32_RX_FIFO, \
(__nocache Canexcel_RxFdMsg rx_msg_##n[CONFIG_CAN_NXP_S32_MAX_RX];)) \
IF_ENABLED(CONFIG_CAN_NXP_S32_RX_FIFO, \
(__nocache Canexcel_RxFdMsg rx_fifo_##n[CAN_NXP_S32_RX_FIFO_DEPTH]; \
static Canexcel_Ip_RxFifoFilterID_ADDR \
rx_fifo_filter##n[CONFIG_CAN_NXP_S32_MAX_RX];)) \
Canexcel_Ip_ConfigType can_nxp_s32_default_config##n = { \
.rx_mbdesc = (uint8)IS_ENABLED(CONFIG_CAN_NXP_S32_RX_FIFO) ? \
0 : CONFIG_CAN_NXP_S32_MAX_RX, \
.tx_mbdesc = (uint8)CONFIG_CAN_NXP_S32_MAX_TX, \
.CanxlMode = CANEXCEL_LISTEN_ONLY_MODE, \
.fd_enable = (boolean)IS_ENABLED(CAN_NXP_S32_FD_MODE), \
.bitRateSwitch = (boolean)CAN_NXP_S32_BRS, \
drivers: can: rework support for manual bus-off recovery Since all CAN controllers drivers seem to support automatic recovery (for any future drivers for hardware without this hardware capability this can easily be implemented in the driver), change the Zephyr CAN controller API policy to: - Always enable automatic bus recovery upon driver initialization, regardless of Kconfig options. Since CAN controllers are initialized in "stopped" state, no unwanted bus-off recovery will be started at this point. - Invert and rename the Kconfig CONFIG_CAN_AUTO_BUS_OFF_RECOVERY, which is enabled by default, to CONFIG_CAN_MANUAL_RECOVERY_MODE, which is disabled by default. Enabling CONFIG_CAN_MANUAL_RECOVERY_MODE=y enables support for the can_recover() API function and a new manual recovery mode (see next bullet). Keeping this guarded by Kconfig allows keeping the flash footprint down for applications not using manual bus-off recovery. - Introduce a new CAN controller operational mode CAN_MODE_MANUAL_RECOVERY. Support for this is only enabled if CONFIG_CAN_MANUAL_RECOVERY_MODE=y. Having this as a mode allows applications to inquire whether the CAN controller supports manual recovery mode via the can_get_capabilities() API function and either fail or rely on automatic recovery - and it allows CAN controller drivers not supporting manual recovery mode to fail early in can_set_mode() during application startup instead of failing when can_recover() is called at a later point in time. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
2024-02-14 22:38:34 +01:00
.ctrlOptions = CANXL_IP_BUSOFF_RECOVERY_U32, \
.Callback = nxp_s32_can_##n##_ctrl_callback, \
.ErrorCallback = nxp_s32_can_##n##_err_callback, \
IF_ENABLED(CONFIG_CAN_NXP_S32_RX_FIFO, \
(.is_rx_fifo_needed = (boolean)TRUE, \
.pRxFifoConfig = { \
.Rx_Fifo_Depth = CAN_NXP_S32_RX_FIFO_DEPTH, \
.Rx_Fifo_Watermark = CAN_NXP_S32_RX_FIFO_WATERMARK, \
.Rx_Fifo_Msg_Size = CAN_NXP_S32_DATA_LENGTH, \
.Rx_Fifo_KeepLast = (boolean)FALSE, \
.isPolling = (boolean)FALSE, \
.MsgBuffersPtr = (uint32 *)rx_fifo_##n, \
},)) \
}; \
static struct can_nxp_s32_data can_nxp_s32_data_##n = { \
.can_state = (Canexcel_Ip_StateType *)&can_nxp_s32_state##n, \
.tx_msg = tx_msg##n, \
IF_DISABLED(CONFIG_CAN_NXP_S32_RX_FIFO, \
(.rx_msg = rx_msg_##n,)) \
IF_ENABLED(CONFIG_CAN_NXP_S32_RX_FIFO, \
(.rx_fifo = rx_fifo_##n, \
.rx_fifo_filter = \
(Canexcel_Ip_RxFifoFilterID_ADDR *)&rx_fifo_filter##n,))\
}; \
static struct can_nxp_s32_config can_nxp_s32_config_##n = { \
.common = CAN_DT_DRIVER_CONFIG_INST_GET(n, 0, CAN_NXP_S32_MAX_BITRATE), \
.base_sic = (CANXL_SIC_Type *)DT_INST_REG_ADDR_BY_NAME(n, sic), \
IF_ENABLED(CONFIG_CAN_NXP_S32_RX_FIFO, \
(.base_rx_fifo = (CANXL_RXFIFO_Type *) \
DT_INST_REG_ADDR_BY_NAME(n, rx_fifo), \
.base_rx_fifo_ctrl = (CANXL_RXFIFO_CONTROL_Type *) \
DT_INST_REG_ADDR_BY_NAME(n, rx_fifo_ctrl),)) \
.instance = CAN_NXP_S32_HW_INSTANCE(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL(n, name), \
.pin_cfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.can_cfg = (Canexcel_Ip_ConfigType *)&can_nxp_s32_default_config##n, \
.irq_config_func = can_irq_config_##n \
}; \
static int can_nxp_s32_##n##_init(const struct device *dev) \
{ \
return can_nxp_s32_init(dev); \
} \
CAN_DEVICE_DT_INST_DEFINE(n, \
can_nxp_s32_##n##_init, \
NULL, \
&can_nxp_s32_data_##n, \
&can_nxp_s32_config_##n, \
POST_KERNEL, \
CONFIG_CAN_INIT_PRIORITY, \
&can_nxp_s32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(CAN_NXP_S32_INIT_DEVICE)