cache: Add Aspeed AST10x0 external cache driver

The CPU in Aspeed AST10x0 SOC is a ARM Cortex-M4 which doesn't internal
cache memory.  Aspeed implements an integrated system level cache to
accelerate instruction and data memory accesses.

Signed-off-by: Dylan Hung <dylan_hung@aspeedtech.com>
This commit is contained in:
Dylan Hung 2022-05-13 15:20:31 +08:00 committed by Carles Cufí
parent 46ff553b68
commit c880db1725
4 changed files with 290 additions and 0 deletions

View file

@ -1 +1,2 @@
# SPDX-License-Identifier: Apache-2.0
zephyr_sources_ifdef(CONFIG_CACHE_ASPEED cache_aspeed.c)

View file

@ -16,3 +16,5 @@ config CACHE_HAS_DRIVER
bool
endif # CACHE
source "drivers/cache/Kconfig.aspeed"

11
drivers/cache/Kconfig.aspeed vendored Normal file
View file

@ -0,0 +1,11 @@
# SPDX-License-Identifier: Apache-2.0
#
# Copyright (c) 2022 ASPEED Technology Inc.
config CACHE_ASPEED
bool "ASPEED external cache driver"
depends on SOC_SERIES_AST10X0
depends on SYSCON
select CACHE_HAS_DRIVER
help
This option enables the CACHE driver for ASPEED AST10X0 series SOC.

276
drivers/cache/cache_aspeed.c vendored Normal file
View file

@ -0,0 +1,276 @@
/*
* Copyright (c) 2022 ASPEED Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <arch/arm/aarch32/cortex_m/cmsis.h>
#include <zephyr/drivers/syscon.h>
/*
* cache area control: each bit controls 32KB cache area
* 1: cacheable
* 0: no-cache
*
* bit[0]: 1st 32KB from 0x0000_0000 to 0x0000_7fff
* bit[1]: 2nd 32KB from 0x0000_8000 to 0x0000_ffff
* ...
* bit[22]: 23th 32KB from 0x000a_8000 to 0x000a_ffff
* bit[23]: 24th 32KB from 0x000b_0000 to 0x000b_ffff
*/
#define CACHE_AREA_CTRL_REG 0xa50
#define CACHE_INVALID_REG 0xa54
#define CACHE_FUNC_CTRL_REG 0xa58
#define CACHED_SRAM_ADDR CONFIG_SRAM_BASE_ADDRESS
#define CACHED_SRAM_SIZE KB(CONFIG_SRAM_SIZE)
#define CACHED_SRAM_END (CACHED_SRAM_ADDR + CACHED_SRAM_SIZE - 1)
#define CACHE_AREA_SIZE_LOG2 15
#define CACHE_AREA_SIZE (1 << CACHE_AREA_SIZE_LOG2)
#define DCACHE_INVALID(addr) (BIT(31) | ((addr & GENMASK(10, 0)) << 16))
#define ICACHE_INVALID(addr) (BIT(15) | ((addr & GENMASK(10, 0)) << 0))
#define ICACHE_CLEAN BIT(2)
#define DCACHE_CLEAN BIT(1)
#define CACHE_EANABLE BIT(0)
/* cache size = 32B * 128 = 4KB */
#define CACHE_LINE_SIZE_LOG2 5
#define CACHE_LINE_SIZE (1 << CACHE_LINE_SIZE_LOG2)
#define N_CACHE_LINE 128
#define CACHE_ALIGNED_ADDR(addr) \
((addr >> CACHE_LINE_SIZE_LOG2) << CACHE_LINE_SIZE_LOG2)
/* prefetch buffer */
#define PREFETCH_BUF_SIZE CACHE_LINE_SIZE
static void aspeed_cache_init(void)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
uint32_t start_bit, end_bit, max_bit;
/* set all cache areas to no-cache by default */
syscon_write_reg(dev, CACHE_FUNC_CTRL_REG, 0);
/* calculate how many areas need to be set */
max_bit = 8 * sizeof(uint32_t) - 1;
start_bit = MIN(max_bit, CACHED_SRAM_ADDR >> CACHE_AREA_SIZE_LOG2);
end_bit = MIN(max_bit, CACHED_SRAM_END >> CACHE_AREA_SIZE_LOG2);
syscon_write_reg(dev, CACHE_AREA_CTRL_REG, GENMASK(end_bit, start_bit));
/* enable cache */
syscon_write_reg(dev, CACHE_FUNC_CTRL_REG, CACHE_EANABLE);
}
/**
* @brief get aligned address and the number of cachline to be invalied
* @param [IN] addr - start address to be invalidated
* @param [IN] size - size in byte
* @param [OUT] p_aligned_addr - pointer to the cacheline aligned address variable
* @return number of cacheline to be invalidated
*
* * addr
* |--------size-------------|
* |-----|-----|-----|-----|-----|
* \ \
* head tail
*
* example 1:
* addr = 0x100 (cacheline aligned), size = 64
* then head = 0x100, number of cache line to be invalidated = 64 / 32 = 2
* which means range [0x100, 0x140) will be invalidated
*
* example 2:
* addr = 0x104 (cacheline unaligned), size = 64
* then head = 0x100, number of cache line to be invalidated = 1 + 64 / 32 = 3
* which means range [0x100, 0x160) will be invalidated
*/
static uint32_t get_n_cacheline(uint32_t addr, uint32_t size, uint32_t *p_head)
{
uint32_t n = 0;
uint32_t tail;
/* head */
*p_head = CACHE_ALIGNED_ADDR(addr);
/* roundup the tail address */
tail = addr + size + (CACHE_LINE_SIZE - 1);
tail = CACHE_ALIGNED_ADDR(tail);
n = (tail - *p_head) >> CACHE_LINE_SIZE_LOG2;
return n;
}
void cache_data_enable(void)
{
aspeed_cache_init();
}
void cache_data_disable(void)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
syscon_write_reg(dev, CACHE_FUNC_CTRL_REG, 0);
}
void cache_instr_enable(void)
{
aspeed_cache_init();
}
void cache_instr_disable(void)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
syscon_write_reg(dev, CACHE_FUNC_CTRL_REG, 0);
}
int cache_data_all(int op)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
uint32_t ctrl;
unsigned int key = 0;
ARG_UNUSED(op);
syscon_read_reg(dev, CACHE_FUNC_CTRL_REG, &ctrl);
/* enter critical section */
if (!k_is_in_isr())
key = irq_lock();
ctrl &= ~DCACHE_CLEAN;
syscon_write_reg(dev, CACHE_FUNC_CTRL_REG, ctrl);
__DSB();
ctrl |= DCACHE_CLEAN;
syscon_write_reg(dev, CACHE_FUNC_CTRL_REG, ctrl);
__DSB();
/* exit critical section */
if (!k_is_in_isr())
irq_unlock(key);
return 0;
}
int cache_data_range(void *addr, size_t size, int op)
{
uint32_t aligned_addr, i, n;
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
unsigned int key = 0;
ARG_UNUSED(op);
if (((uint32_t)addr < CACHED_SRAM_ADDR) ||
((uint32_t)addr > CACHED_SRAM_END)) {
return 0;
}
/* enter critical section */
if (!k_is_in_isr())
key = irq_lock();
n = get_n_cacheline((uint32_t)addr, size, &aligned_addr);
for (i = 0; i < n; i++) {
syscon_write_reg(dev, CACHE_INVALID_REG, 0);
syscon_write_reg(dev, CACHE_INVALID_REG, DCACHE_INVALID(aligned_addr));
aligned_addr += CACHE_LINE_SIZE;
}
__DSB();
/* exit critical section */
if (!k_is_in_isr())
irq_unlock(key);
return 0;
}
int cache_instr_all(int op)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
uint32_t ctrl;
unsigned int key = 0;
ARG_UNUSED(op);
syscon_read_reg(dev, CACHE_FUNC_CTRL_REG, &ctrl);
/* enter critical section */
if (!k_is_in_isr())
key = irq_lock();
ctrl &= ~ICACHE_CLEAN;
syscon_write_reg(dev, CACHE_FUNC_CTRL_REG, ctrl);
__ISB();
ctrl |= ICACHE_CLEAN;
syscon_write_reg(dev, CACHE_FUNC_CTRL_REG, ctrl);
__ISB();
/* exit critical section */
if (!k_is_in_isr())
irq_unlock(key);
return 0;
}
int cache_instr_range(void *addr, size_t size, int op)
{
uint32_t aligned_addr, i, n;
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
unsigned int key = 0;
ARG_UNUSED(op);
if (((uint32_t)addr < CACHED_SRAM_ADDR) ||
((uint32_t)addr > CACHED_SRAM_END)) {
return 0;
}
n = get_n_cacheline((uint32_t)addr, size, &aligned_addr);
/* enter critical section */
if (!k_is_in_isr())
key = irq_lock();
for (i = 0; i < n; i++) {
syscon_write_reg(dev, CACHE_INVALID_REG, 0);
syscon_write_reg(dev, CACHE_INVALID_REG, ICACHE_INVALID(aligned_addr));
aligned_addr += CACHE_LINE_SIZE;
}
__DSB();
/* exit critical section */
if (!k_is_in_isr())
irq_unlock(key);
return 0;
}
#ifdef CONFIG_DCACHE_LINE_SIZE_DETECT
size_t cache_data_line_size_get(void)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
uint32_t ctrl;
syscon_read_reg(dev, CACHE_FUNC_CTRL_REG, &ctrl);
return (ctrl & CACHE_EANABLE) ? CACHE_LINE_SIZE : 0;
}
#endif /* CONFIG_DCACHE_LINE_SIZE_DETECT */
#ifdef CONFIG_ICACHE_LINE_SIZE_DETECT
size_t cache_instr_line_size_get(void)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(syscon));
uint32_t ctrl;
syscon_read_reg(dev, CACHE_FUNC_CTRL_REG, &ctrl);
return (ctrl & CACHE_EANABLE) ? CACHE_LINE_SIZE : 0;
}
#endif /* CONFIG_ICACHE_LINE_SIZE_DETECT */