This allows the SoC to have total control on what MPU ranges
to be programmed at boot. This overrides the generic ranges
in the architecture core code.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Both CONFIG_XTENSA_SYSCALL_USE_HELPER and
CONFIG_XTENSA_INSECURE_USERSPACE are also applicable to MPU.
So move them out of the CPU_HAS_MMU block.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Instead of using CONFIG_MMU_PAGE_SIZE for size of the privileged
stack, use the actual kconfig CONFIG_PRIVILEGED_STACK_SIZE.
This allows for changing the size of privileged stack, and
also aligns to the usage of CONFIG_PRIVILEGED_STACK_SIZE.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
This adds a kconfig to enable invalidating the TLBs related to
the incoming thread's memory domain during page table swaps.
It provides a workaround, if needed, to clear out stale TLB
entries used by the thread being swapped out. Those stale
entries may contain incorrect permissions and rings.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
* Wording on CONFIG_SIMULATOR_XTENSA
* Remove "default n" as default is no anyway.
* Remove some tabs as we almost never indent inside a if block
in Zephyr.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
There is no in-tree user. Also, it is misleading as we use
SCOMPARE1 for spinlock too, not just IPC.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC should be defined at the SoC
or the board level since Xtensa cores are high configurable.
The default is just for ISS (Instruction Set Simulator). So
remove it from the arch level.
The xt-sim board is the only one in tree that is targeting
the ISS, so add it there.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Add a Kconfig option (and build warning) alerting about the problem
of the kernel spilling register in behave of the userspace.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
Userspace support for Xtensa architecture using Xtensa MMU.
Some considerations:
- Syscalls are not inline functions like in other architectures because
some compiler issues when using multiple registers to pass parameters
to the syscall. So here we have a function call so we can use
registers as we need.
- TLS is not supported by xcc in xtensa and reading PS register is
a privileged instruction. So, we have to use threadptr to know if a
thread is an user mode thread.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Some workarounds were introduced for intel cavs2.5 platform bring up.
It is not general so move them to platform code.
Signed-off-by: Rander Wang <rander.wang@intel.com>
This provides custom memory range check functions as
it gets a bit complicated with cached/uncached regions.
These functions are marked as __weak so SoC or board
can override these if needed.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Refactor the ESP32 target SOCs together with
all related boards. Most braking changes includes:
- changing the CONFIG_SOC_ESP32* to refer to
the actual soc line (esp32,esp32s2,esp32s3,esp32c3)
- replacing CONFIG_SOC with the CONFIG_SOC_SERIES
- creating CONFIG_SOC_FAMILY_ESP32 to embrace all
the ESP32 across all used architectures
- introducing CONFIG_SOC_PART_NUMBER_* to
provide a SOC model config
- introducing the 'common' folder to hide all
commonly used configs and files.
- updating west.yml to reflect previous changes in hal
Signed-off-by: Marek Matej <marek.matej@espressif.com>
This adds a Kconfig to introduce the Xtensa specific
arch_spin_relax() which can do more NOPs. Some Xtensa SoCs
may need more NOPs after failure to lock a spinlock,
especially under SMP. This gives the bus extra time to
propagate the RCW transactions among CPUs.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
This moves the TLB miss handling to the C exception handler.
This also allows us to handle page faults (for example,
unmapped pages) during this time as any more exceptions
handled in the C handler will not trigger the double
exception handler but the same C handler.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Instead of being able to arbitrarily set the PTEVADDR for page
table, this provides choices (currently just one). This is in
preparation to enable handling memory management exception in
C code. For that to work, we will need to pre-load the page
table address (PTEVADDR) for the memory page containing
exception code and data (containing jump addresses), and
various stacks. This is to prempt any TLB misses during handling
the level 1 interrupt code. If a TLB miss is encountered during
handling of level 1 interrupt, we will be thrown into double
exception handling code where we will get stuck in infinite
loop. However, in order to pre-load the page table entries,
PTEVADDR needs to be calculated. This requires the use of
PTEVADDR base which cannot be loaded via l32r, as we may cause
a data TLB miss. So we must be able to grab the PTEVADDR base
address strictly within code, and must be without any data
load. So changing CONFIG_XTENSA_MMU_PTEVADDR to be based on
choice so we can have pre-defined bit shift value for shift
operation. This shift value will be used in exception handling
code.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Add a build option to tell if memory should be mapped in cached
and uncachedr regions.
If the memory is neither in cached nor uncached region it is not double
mapped.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
Initial support for Xtensa MMU version 3. It is using a two level page
table based on fact that the page table is in the virtual space. Only
the top level (page directory) is wired mapped in the TLB to avoid
second level page miss.
The mapped memory is completely fragmented in multiple sections, maybe
we find a better way in future.
The exception handler is where we effectively map the memory, the way it
works is:
1) SW try to access some memory address
2) The address is not mapped, so the MMU will try the auto-refill,
looking the page table
3) The page table contents is not mapped (remember, just the top-level page
is mapped)
4) An exception will be triggered, in the exception we try to read the
portion of the page table that maps the original address
5) The address is not mapped, so the MMU will try again the auto-refill.
This time though, the address is mapped by the top level page that is
properly mapped. (The top-level page maps the page table itself).
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
Expose the Xtenesa CCOUNT timing register (the lowest level CPU cycle
counter) using the arch_timing_*() API.
This is the simplest possible way to get this working. Future work
might focus on moving the rate configuration into devicetree in a
standard way, integrating with the platform clock driver on intel_adsp
such that the reported cycle rate tracks runtime changes (though IIRC
this is not a SOF requirement), and adding better test coverage to the
timing layer, which right now isn't exercised anywhere but in
benchmarks.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Platform specific functions necessary to enable this feature were
implemented (z_xtensa_ptr_executable() and
z_xtensa_stack_ptr_is_sane() for Intel ADSP platforms.
Current implementation just ensures stack pointer and program counter
are within relevant areas defined in the linker scripts, without going
too fine grained.
Also, `.iram1` section, used by the backtrace code, also added to
Intel ADSP linker script.
Finally, update west manifest to use up-to-date SOF, which contains a
patch to fix build issues related to the linker changes.
Signed-off-by: Ederson de Souza <ederson.desouza@intel.com>
According to Kconfig guidelines, boolean prompts must not start with
"Enable...". The following command has been used to automate the changes
in this patch:
sed -i "s/bool \"[Ee]nables\? \(\w\)/bool \"\U\1/g" **/Kconfig*
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
The Xtensa implementation of arch_irq_offload() required that the user
select the correct interrupt manually, and would race with itself if
invoked from separate CPUs (it was saved here by the main
irq_offload() function which has a semaphore to serialize access).
Use the new gen_zsr.py script to automatically detect the highest
available software interrupt, and keep a per-CPU set of
callback/parameter pointers.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
This is trick (mapping RAM twice so you can use alternate Region
Protection Option addresses to control cacheability) is something any
Xtensa hardware designer might productively choose to do. And as it
works really well, we should encourage that by making this a generic
architecture feature for Zephyr.
Now everything works by setting two kconfig values at the soc level
defining the cached and uncached regions. As long as these are
correct, you can then use the new arch_xtensa_un/cached_ptr() APIs to
convert between them and a ARCH_XTENSA_SET_RPO_TLB() macro that
provides much smaller initialization code (in C!) than the HAL
assembly macros. The conversion routines have been generalized to
support conversion between any two regions.
Note that full KERNEL_COHERENCE still requires support from the
platform linker script, that can't be made generic given the way
Zephyr does linkage.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Startup on these devices was sort of a mess, with multiple variants of
Xtensa and platform initialization code from multiple ancestries being
invoked at different places for different purposes. Just use one code
path for everyone.
Bootloader entry starts with a minimal assembly stub that simply sets
WINDOW{START,BASE}, PS and a stack pointer and then jumps to C code.
That then uses the cpu_early_init() implementation from cAVS 2.5's
secondary cores to finish Xtensa initialization, and then flows
directly into the pre-existing bootloader C code to initialize cache
and memory and copy the HP-SRAM image, then it invokes Zephyr via a
simple C function call to z_cstart().
Likewise, remove the "reset vector" from Zephyr. This was never a
reset vector, reset on these devices goes to a fixed address in a ROM.
CPU initialization is handled explicitly and completely in the
bootloader now, in a way that can be unified between the main and
secondary cores. Entry from the bootloader now goes directly into
z_cstart() via a C call (via a single jump instruction placed at the
entry point address -- that's going away soon too once we're using a
unified link).
Now that vector table initialization happens in a uniform way, there's
no need to copy the VECBASE value during arch_start_cpu().
Finally note that this also reverts the
CONFIG_RESET_VECTOR_IN_BOOTLOADER kconfig variable added for these
platforms, because it's no longer a tunable and true always.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Adds Xtensa as supported architecture for coredump. Fixes
a few typos in documentation, Kconfig and a C file. Dumps
minimal set of registers shown by 'info registers' in GDB
for the sample_controller and ESP32 SOCs. Updates tests.
Signed-off-by: Lauren Murphy <lauren.murphy@intel.com>
For some platforms, like NXP's IMX8 or Mediatek's MT8195,
the size of an interrupt vector table entry is 0x1C bytes,
less than usual (0x30 for Intel's platforms).
So, the interrupt handlers don't fit in the vector table
entries.
I've added a small indirection to bypass this size
constraint and moved the default handlers to the end
of vector table, renaming them to
_Level\LVL\()VectorHelper.
For this, I've added a generic configuration -
XTENSA_SMALL_VECTOR_TABLE_ENTRY.
Signed-off-by: Iuliana Prodan <iuliana.prodan@nxp.com>
A simple WAITI isn't sufficient in all cases. The cAVS 2.5 hardware
uses WAITI as the entry state for per-core power gating, which is very
difficult to debug. Provide a fallback that simply spins in the idle
loop waiting for interrupts to provide a stable system while this
feature stabilizes.
Also, the SOF code for those platforms references a known bug with the
Xtensa LX6 core IP (or at least some versions), and will prefix the
WAIT instruction with 128 NOP.N's followed by an ISYNC and EXTW. This
bug hasn't been seen under Zephyr yet, and details are sketchy. But
the code is simply enough to import and works correctly.
Place both workaround under new kconfig variables and select them both
(even though they're actually mutually exclusive -- if you select both
CPU_IDLE_SPIN overrides) for cavs_v25.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
This change uses stack frame to print backtrace once exception occurs
Printing backtrace helps to identify the cause of exception
Signed-off-by: Shubham Kulkarni <shubham.kulkarni@espressif.com>
Currently Zephyr links reset-vector.S twice in xtensa builds:
into the bootloader and the main image. It is run at the end
of the boot loader execution and immediately after that again
in the beginning of the main code. This patch adds a
configuration option to select whether to link the file to the
bootloader or to the application. The default is to the
application, as needed e.g. for QEMU, SOF links it to the
bootloader like in native builds.
Signed-off-by: Guennadi Liakhovetski <guennadi.liakhovetski@linux.intel.com>
Use this short header style in all Kconfig files:
# <description>
# <copyright>
# <license>
...
Also change all <description>s from
# Kconfig[.extension] - Foo-related options
to just
# Foo-related options
It's clear enough that it's about Kconfig.
The <description> cleanup was done with this command, along with some
manual cleanup (big letter at the start, etc.)
git ls-files '*Kconfig*' | \
xargs sed -i -E '1 s/#\s*Kconfig[\w.-]*\s*-\s*/# /'
Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
Same deal as in commit 7fdb525754 ("kconfig: Use 'default' instead of
'def_bool' in Kconfig.defconfig files"), but I hacked Kconfiglib to also
find cases where the type is given separately as e.g.
config FOO
int
default 3
Motivation (from a note in
https://docs.zephyrproject.org/latest/guides/kconfig/index.html):
For a symbol defined in multiple locations (e.g., in a
Kconfig.defconfig file in Zephyr), it is best to only give the
symbol type for the "base" definition of the symbol, and to use
'default' (instead of 'def_<type>' value) for the remaining
definitions. That way, if the base definition of the symbol is
removed, the symbol ends up without a type, which generates a
warning that points to the other definitions. That makes the extra
definitions easier to discover and remove.
It's also nice if 'def_bool' and the like turn into a semi-reliable flag
that the symbol is only defined in Kconfig.defconfig files. That might
be a sign that things could be cleaned up.
Will do a separate pass later to remove some symbols only defined in
Kconfig.defconfig files.
Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
Unused since commit 6fd6b7e50a ("xtensa: remove legacy arch
implementation").
Found with a script.
Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
Unused since commit 6fd6b7e50a ("xtensa: remove legacy arch
implementation").
Found with a script.
Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
We re-wrote the xtensa arch code, but never got around
to purging the old implementation.
Removed those boards which hadn't been moved to the new
arch code. These were all xt-sim simulator targets and not
real hardware.
Fixes: #18138
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Don't present USE_SWITCH and SMP to user applications that are
configuring for platforms that do not support SMP or USE_SWITCH.
Signed-off-by: Sebastian Bøe <sebastian.boe@nordicsemi.no>
This allows Kconfig to specify which special register is being
used to store the pointer to the _kernel.cpu struct.
Since the SoC itself is highly configurable, sometimes MISC0 is not
available. So this adds the ability to use other special registers.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Rather than do that for each architecture, source SoC Kconfigs where the
code is maintained, under ZEPHYR_BASE/soc.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Move the SoC outside of the architecture tree and put them at the same
level as boards and architectures allowing both SoCs and boards to be
maintained outside the tree.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
A design flaw of 'gsource' is that there's no way to require at least
one file to match the glob pattern. This could lead to silent errors.
Switch to a new design, where a plain 'source' is globbing and requires
at least one file to match. A separate 'osource' (optional source)
statement is available for cases where it's okay for a pattern (or plain
filename) to not match any files.
'orsource' combines 'osource' and 'rsource' (relative source).
This commit search-replaces 'gsource' with 'source', but backwards
compatibility with 'gsource' is still maintained by making it an alias
for 'osource' (and by making 'grsource' an alias for 'orsource').
The three Kconfig files arch/{nios2,posix,xtensa}/Kconfig source
arch/{nios2,posix,xtensa}/soc/*/Kconfig, which doesn't match any files.
Use 'osource' for those. The soc/*/Kconfig files seem to be for
additional SoC-specific symbols, only none exist yet on those ARCHes.
Also use 'osource' for the source of $ENV_VAR_BOARD_DIR/Kconfig in
boards/Kconfig, which doesn't exist for all boards.
Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
Up until now, Zephyr has patched Kconfig to use the last 'default' with
a satisfied condition, instead of the first one. I'm not sure why the
patch was added (it predates Kconfiglib), but I suspect it's related to
Kconfig.defconfig files.
There are at least three problems with the patch:
1. It's inconsistent with how Kconfig works in other projects, which
might confuse newcomers.
2. Due to oversights, earlier 'range' properties are still preferred,
as well as earlier 'default' properties on choices.
In addition to being inconsistent, this makes it impossible to
override 'range' properties and choice 'default' properties if the
base definition of the symbol/choice already has 'range'/'default'
properties.
I've seen errors caused by the inconsistency, and I suspect there
are more.
3. A fork of Kconfiglib that adds the patch needs to be maintained.
Get rid of the patch and go back to standard Kconfig behavior, as
follows:
1. Include the Kconfig.defconfig files first instead of last in
Kconfig.zephyr.
2. Include boards/Kconfig and arch/<arch>/Kconfig first instead of
last in arch/Kconfig.
3. Include arch/<arch>/soc/*/Kconfig first instead of last in
arch/<arch>/Kconfig.
4. Swap a few other 'source's to preserve behavior for some scattered
symbols with multiple definitions.
Swap 'source's in some no-op cases too, where it might match the
intent.
5. Reverse the defaults on symbol definitions that have more than one
default.
Skip defaults that are mutually exclusive, e.g. where each default
has an 'if <some board>' condition. They are already safe.
6. Remove the prefer-later-defaults patch from Kconfiglib.
Testing was done with a Python script that lists all Kconfig
symbols/choices with multiple defaults, along with a whitelist of fixed
symbols. The script also verifies that there are no "unreachable"
defaults hidden by defaults without conditions
As an additional test, zephyr/.config was generated before and after the
change for several samples and checked to be identical (after sorting).
This commit includes some default-related cleanups as well:
- Simplify some symbol definitions, e.g. where a default has 'if FOO'
when the symbol already has 'depends on FOO'.
- Remove some redundant 'default ""' for string symbols. This is the
implicit default.
Piggyback fixes for swapped ranges on BT_L2CAP_RX_MTU and
BT_L2CAP_TX_MTU (caused by confusing inconsistency).
Piggyback some fixes for style nits too, e.g. unindented help texts.
Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
Bool symbols implicitly default to 'n'.
A 'default n' can make sense e.g. in a Kconfig.defconfig file, if you
want to override a 'default y' on the base definition of the symbol. It
isn't used like that on any of these symbols though.
Signed-off-by: Ulf Magnusson <Ulf.Magnusson@nordicsemi.no>
The Kconfig option TOOLCHAIN_VARIANT (not to be confused with
ZEPHYR_TOOLCHAIN_VARIANT) is a legacy configuration option that has
very few use-cases and can easily be dropped.
It's functionality is easily covered by CONFIG_X86_IAMCU and
ZEPHYR_TOOLCHAIN_VARIANT.
This commit removes all references of it from Zephyr.
Signed-off-by: Sebastian Bøe <sebastian.boe@nordicsemi.no>
Until now, Zephyr has used a patched Kconfiglib that turns 'source' into
a globbing source (by replacing 'source' with 'gsource' at the token
level). There's two problems with this:
- The patch needs to be maintained separately
- Misspelled filenames are silently ignored, as they look like glob
patterns that don't match anything
Fix it as follows:
1. Replace all 'source' statements that use wildcards with 'gsource'
2. Remove the custom Kconfiglib patch so that 'source' no longer globs
The sed pattern '/source.*[*?]/s/source/gsource/' was run over all
Kconfig* files to do the replacement.
source's that use environment variables that might contain glob patterns
were manually changed to gsource.
Building the docs in doc/ is a good test, as doc/Makefile deliberately
sets the environment variables to glob up as many Kconfig files as
possible.
Signed-off-by: Ulf Magnusson <ulfalizer@gmail.com>