Move the syscall_handler.h header, used internally only to a dedicated
internal folder that should not be used outside of Zephyr.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
The documentation suggests that k_timer_start can be invoked from ISR
and preemptive contexts, however, an assertion failure occurs if one
k_timer_start call preempts another for the same timer instance. This
commit mitigates the issue by implementing a spinlock throughout the
k_timer_start function, ensuring thread-safety.
Fixes: #62908
Signed-off-by: Pedro Sousa <sousapedro596@gmail.com>
This header does not expose any public APIs, so move it under
kernel/include and change files including it.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Commit 3e729b2b1c ("kernel/timer: Correctly clamp period argument")
increased the lower limit to 1 so that it wouldn't conflict with a
K_NO_WAIT. But in doing so it enforced a minimum period of 2 ticks.
And the subtraction must obviously be avoided if the period is zero, etc.
Instead of doing this masquerade in k_timer_start(), let's move the
subtraction and clamping in z_timer_expiration_handler() right before
registering a new timeout. It makes the code cleaner, and then it is
possible to have single-tick periods again.
Whith this, timer_jitter_drift in tests/kernel/timer/timer_behavior does
pass with any CONFIG_SYS_CLOCK_TICKS_PER_SEC value, even when the tick
period is equal or larger than the specified timer period for the test
which failed the test before.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
When a timer is restarted from a high priority interrupt, it may
happen that the timer is re-added to the timeout list right after
it is removed from that list prior to execution of its expiration
handler but before that execution actually occurs. This leads to
an assertion failure reported for `z_add_timeout()` because then
that function, called from `z_timer_expiration_handler()` for
periodic timers, turns out to be adding a timeout that is already
added to the timeout list.
This commit detects such situation in `z_timer_expiration_handler()`
and makes that function exit immediately when that occurs (as the
timer was restared, its expiration handler should not be executed).
Signed-off-by: Andrzej Głąbek <andrzej.glabek@nordicsemi.no>
MISRA C:2012 Rule 14.4 (The controlling expression of an if statement
and the controlling expression of an iteration-statement shall have
essentially Boolean type.)
Use `bool' instead of `int' to represent Boolean values.
Use `do { ... } while (false)' instead of `do { ... } while (0)'.
Use comparisons with zero instead of implicitly testing integers.
This commit is a subset of the original commit:
5d02614e34a86b549c7707d3d9f0984bc3a5f22a
Signed-off-by: Simon Hein <SHein@baumer.com>
In order to bring consistency in-tree, migrate all kernel code to the
new prefix <zephyr/...>. Note that the conversion has been scripted,
refer to zephyrproject-rtos#45388 for more details.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
The k_timer utility was written to assume that the kernel timeout
handler would never be delayed by more than a tick, so it can naively
reschedule the next interrupt with a simple delay.
Unfortunately real platforms have glitchy hardware and high tick
rates, and on intel_adsp we're seeing this promise being broken in
some circumstances.
It's probably not a good idea to try to plumb the timer driver
interface up into the IPC layer to do this correction, but thankfully
the existing absolute timeout API provides the tools we need (though
it does require that CONFIG_TIMEOUT_64BIT be enabled).
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
For functions returning nothing, there is no need to document
with @return, as Doxgen complains about "documented empty
return type of ...".
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Add spinlock unlocking before calling timer expiration
handler. Locking was introduced by dde3d6c.
Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
before running timer's timeout function, we need to make
sure that those threads waiting on this timer have been
added into the timer's wait queue, so add operations to
use timer lock to mask interrupts in z_timer_expiration_handler
function to synchronize timer's wait queue.
Signed-off-by: Chen Peng1 <peng1.chen@intel.com>
Remove this intrusive tracing feature in favor of the new object tracing
using the main tracing feature in zephyr. See #33603 for the new tracing
coverage for all objects.
This will allow for support in more tools and less reliance on GDB for
tracing objects.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Updated timer to not touch thread/scheduler code when multithreading
is off.
Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
Zephyr docs state that timers will act as one-shot timers when started
with a period of K_NO_WAIT or K_FOREVER. However the code adjusting
period was setting K_FOREVER timeout ticks to 1 which caused the timer
to expire every tick. This adds a check to not adjust K_FOREVER periods
Signed-off-by: Eric Johnson <eric@liveathos.com>
Several internal APIs wrote thread attributes (return value, mainly)
_after_ calling `z_ready_thread`. This is unsafe, at least in SMP,
because another core could have already picked up and run the thread.
Fixes#32800.
Signed-off-by: James Harris <james.harris@intel.com>
The internal API to measure time until a delay expires does not modify
the referenced timeout. Make the functions that call it take pointers
to const objects, so that they can be used with pointer to
const-qualified containers.
Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
API that takes k_timer structures but doesn't change data in them is
updated to const-qualify the underlying object, allowing information
to be retrieved from contexts where the containing object is
immutable.
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
Now that device_api attribute is unmodified at runtime, as well as all
the other attributes, it is possible to switch all device driver
instance to be constant.
A coccinelle rule is used for this:
@r_const_dev_1
disable optional_qualifier
@
@@
-struct device *
+const struct device *
@r_const_dev_2
disable optional_qualifier
@
@@
-struct device * const
+const struct device *
Fixes#27399
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
The possibility of passing K_FOREVER as the initial duration argument
to k_timer_start() wasn't being handled, with the result that the
computed value became an zero timeout (effecitvely treating it as
K_NO_WAIT and firing at the next tick).
This is obviously pathlogical, but it should still do what the code
says it should and wait forever.
Make k_timer_start(..., K_FOREVER, ...) a noop.
Fixes#25820
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The period argument of a k_timer needs an offset of one tick from the
value computed in user code (because periods get reset from within the
ISR, see the comment above this code for an explanation). When the
computed tick value was 1, it would become 0. This is actually
perfectly correct as a k_timeout_t to be passed to z_add_timeout().
BUT: to k_timer's API, K_NO_WAIT means "never" (i.e. the same as
K_FOREVER) and not "as soon as possible", so the period timer would
not be reset. This is sort of a wart, but it's the way the API has
been specified forever.
The upshot is that for the case of calling k_timer_start() with a
minimal period argument (i.e. one that produces "one tick"), the
period would be ignored and the timer would act like a one shot. Fix
the clamp so it can't produce K_NO_WAIT.
This also adds a filter for absolute timeouts, which (while that's
sort of a pathological usage) were getting that one tick offset when
it wasn't appropriate.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Add tick-based (i.e. precision resistant) inspection APIs for kernel
timeouts visible via k_timer, k_delayed work and thread timeouts
(i.e. pended/sleeping threads). These are each available in
"remaining" and "expires" variants returning time values relative to
current time and system start. All have system calls where applicable
(i.e. everywhere but k_delayed_work, which is not a userspace API)
The pre-existing millisecond "remaining_get()" predicates for timer
and delayed work remain, but are expressed in terms of the newer
calls.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Add support for "absolute" timeouts, which are expressed relative to
system uptime instead of deltas from current time. These allow for
more race-resistant code to be written by allowing application code to
do a single timeout computation, once, and then reuse the timeout
value even if the thread wakes up and needs to suspend again later.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Add a k_timeout_t type, and use it everywhere that kernel API
functions were accepting a millisecond timeout argument. Instead of
forcing milliseconds everywhere (which are often not integrally
representable as system ticks), do the conversion to ticks at the
point where the timeout is created. This avoids an extra unit
conversion in some application code, and allows us to express the
timeout in units other than milliseconds to achieve greater precision.
The existing K_MSEC() et. al. macros now return initializers for a
k_timeout_t.
The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t
values, which means they cannot be operated on as integers.
Applications which have their own APIs that need to inspect these
vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to
test for equality.
Timer drivers, which receive an integer tick count in ther
z_clock_set_timeout() functions, now use the integer-valued
K_TICKS_FOREVER constant instead of K_FOREVER.
For the initial release, to preserve source compatibility, a
CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the
k_timeout_t will remain a compatible 32 bit value that will work with
any legacy Zephyr application.
Some subsystems present timeout (or timeout-like) values to their own
users as APIs that would re-use the kernel's own constants and
conventions. These will require some minor design work to adapt to
the new scheme (in most cases just using k_timeout_t directly in their
own API), and they have not been changed in this patch, instead
selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems
include: CAN Bus, the Microbit display driver, I2S, LoRa modem
drivers, the UART Async API, Video hardware drivers, the console
subsystem, and the network buffer abstraction.
k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant
provided that works identically to the original API.
Most of the changes here are just type/configuration management and
documentation, but there are logic changes in mempool, where a loop
that used a timeout numerically has been reworked using a new
z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was
enabled) a similar loop was needlessly used to try to retry the
k_poll() call after a spurious failure. But k_poll() does not fail
spuriously, so the loop was removed.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Mark the old time conversion APIs deprecated, leave compatibility
macros in place, and replace all usage with the new API.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Promote the private z_arch_* namespace, which specifies
the interface between the core kernel and the
architecture code, to a new top-level namespace named
arch_*.
This allows our documentation generation to create
online documentation for this set of interfaces,
and this set of interfaces is worth treating in a
more formal way anyway.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This commit refactors kernel and arch headers to establish a boundary
between private and public interface headers.
The refactoring strategy used in this commit is detailed in the issue
This commit introduces the following major changes:
1. Establish a clear boundary between private and public headers by
removing "kernel/include" and "arch/*/include" from the global
include paths. Ideally, only kernel/ and arch/*/ source files should
reference the headers in these directories. If these headers must be
used by a component, these include paths shall be manually added to
the CMakeLists.txt file of the component. This is intended to
discourage applications from including private kernel and arch
headers either knowingly and unknowingly.
- kernel/include/ (PRIVATE)
This directory contains the private headers that provide private
kernel definitions which should not be visible outside the kernel
and arch source code. All public kernel definitions must be added
to an appropriate header located under include/.
- arch/*/include/ (PRIVATE)
This directory contains the private headers that provide private
architecture-specific definitions which should not be visible
outside the arch and kernel source code. All public architecture-
specific definitions must be added to an appropriate header located
under include/arch/*/.
- include/ AND include/sys/ (PUBLIC)
This directory contains the public headers that provide public
kernel definitions which can be referenced by both kernel and
application code.
- include/arch/*/ (PUBLIC)
This directory contains the public headers that provide public
architecture-specific definitions which can be referenced by both
kernel and application code.
2. Split arch_interface.h into "kernel-to-arch interface" and "public
arch interface" divisions.
- kernel/include/kernel_arch_interface.h
* provides private "kernel-to-arch interface" definition.
* includes arch/*/include/kernel_arch_func.h to ensure that the
interface function implementations are always available.
* includes sys/arch_interface.h so that public arch interface
definitions are automatically included when including this file.
- arch/*/include/kernel_arch_func.h
* provides architecture-specific "kernel-to-arch interface"
implementation.
* only the functions that will be used in kernel and arch source
files are defined here.
- include/sys/arch_interface.h
* provides "public arch interface" definition.
* includes include/arch/arch_inlines.h to ensure that the
architecture-specific public inline interface function
implementations are always available.
- include/arch/arch_inlines.h
* includes architecture-specific arch_inlines.h in
include/arch/*/arch_inline.h.
- include/arch/*/arch_inline.h
* provides architecture-specific "public arch interface" inline
function implementation.
* supersedes include/sys/arch_inline.h.
3. Refactor kernel and the existing architecture implementations.
- Remove circular dependency of kernel and arch headers. The
following general rules should be observed:
* Never include any private headers from public headers
* Never include kernel_internal.h in kernel_arch_data.h
* Always include kernel_arch_data.h from kernel_arch_func.h
* Never include kernel.h from kernel_struct.h either directly or
indirectly. Only add the kernel structures that must be referenced
from public arch headers in this file.
- Relocate syscall_handler.h to include/ so it can be used in the
public code. This is necessary because many user-mode public codes
reference the functions defined in this header.
- Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is
necessary to provide architecture-specific thread definition for
'struct k_thread' in kernel.h.
- Remove any private header dependencies from public headers using
the following methods:
* If dependency is not required, simply omit
* If dependency is required,
- Relocate a portion of the required dependencies from the
private header to an appropriate public header OR
- Relocate the required private header to make it public.
This commit supersedes #20047, addresses #19666, and fixes#3056.
Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
z_set_thread_return_value is part of the core kernel -> arch
interface and has been renamed to z_arch_thread_return_value_set.
z_set_thread_return_value_with_data renamed to
z_thread_return_value_set_with_data for consistency.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This is part of the core kernel -> architecture interface
and is appropriately renamed z_arch_is_in_isr().
References from test cases changed to k_is_in_isr().
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The callback function has been ignored in z_timeout_init() since the
timer rework in fall 2018. Passing real handlers to it in code is
distracting when they will be overridden by whatever callback is
provided in z_add_timeout().
As this function is an internal API deprecation is not necessary.
Remove the parameter and change all call sites to drop the argument.
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
The semi-automated API changes weren't checkpatch aware. Fix up
whitespace warnings that snuck into the previous patches. Really this
should be squashed, but that's somewhat difficult given the structure
of the series.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
System call arguments, at the arch layer, are single words. So
passing wider values requires splitting them into two registers at
call time. This gets even more complicated for values (e.g
k_timeout_t) that may have different sizes depending on configuration.
This patch adds a feature to gen_syscalls.py to detect functions with
wide arguments and automatically generates code to split/unsplit them.
Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't
work with functions like this, because for N arguments (our current
maximum N is 10) there are 2^N possible configurations of argument
widths. So this generates the complete functions for each handler and
wrapper, effectively doing in python what was originally done in the
preprocessor.
Another complexity is that traditional the z_hdlr_*() function for a
system call has taken the raw list of word arguments, which does not
work when some of those arguments must be 64 bit types. So instead of
using a single Z_SYSCALL_HANDLER macro, this splits the job of
z_hdlr_*() into two steps: An automatically-generated unmarshalling
function, z_mrsh_*(), which then calls a user-supplied verification
function z_vrfy_*(). The verification function is typesafe, and is a
simple C function with exactly the same argument and return signature
as the syscall impl function. It is also not responsible for
validating the pointers to the extra parameter array or a wide return
value, that code gets automatically generated.
This commit includes new vrfy/msrh handling for all syscalls invoked
during CI runs. Future commits will port the less testable code.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Given that the section name and boundary simbols can be inferred from
the struct object name, it makes sense to create an iterator that
abstracts away the access details and reduce the possibility for
mistakes.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Update reserved function names starting with one underscore, replacing
them as follows:
'_k_' with 'z_'
'_K_' with 'Z_'
'_handler_' with 'z_handl_'
'_Cstart' with 'z_cstart'
'_Swap' with 'z_swap'
This renaming is done on both global and those static function names
in kernel/include and include/. Other static function names in kernel/
are renamed by removing the leading underscore. Other function names
not starting with any prefix listed above are renamed starting with
a 'z_' or 'Z_' prefix.
Function names starting with two or three leading underscores are not
automatcally renamed since these names will collide with the variants
with two or three leading underscores.
Various generator scripts have also been updated as well as perf,
linker and usb files. These are
drivers/serial/uart_handlers.c
include/linker/kobject-text.ld
kernel/include/syscall_handler.h
scripts/gen_kobject_list.py
scripts/gen_syscall_header.py
Signed-off-by: Patrik Flykt <patrik.flykt@intel.com>
Simple global lock around the timer API. Actually a lot of this usage
was using needless vestigial locking around existing scheduler and
timeout APIs that are now internally synchronized.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Just like with _Swap(), we need two variants of these utilities which
can atomically release a lock and context switch. The naming shifts
(for byte count reasons) to _reschedule/_pend_curr, and both have an
_irqlock variant which takes the traditional locking.
Just refactoring. No logic changes.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Whether a timeout is linked into the timeout queue can be determined
from the corresponding sys_dnode_t linked state. This removes the need
to use a special flag value in dticks to determine that the timeout is
inactive.
Update _abort_timeout to return an error code, rather than the flag
value, when the timeout to be aborted was not active.
Remove the _INACTIVE flag value, and replace its external uses with an
internal API function that checks whether a timeout is inactive.
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
MISRA-C says all declarations of an object or function must use the
same name and qualifiers.
MISRA-C rule 8.3
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
In C90 was introduced function prototype, that allows argument types
to be checked against parameter types, though it is not necessary
specify names for the parameters. MISRA-C requires names for function
prototype parameters, it claims that names can provide useful
information regarding the function interface.
MISRA-C rule 8.2
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
Now that the API has been fixed up, replace the existing timeout queue
with a much smaller version. The basic algorithm is unchanged:
timeouts are stored in a sorted dlist with each node nolding a delta
time from the previous node in the list; the announce call just walks
this list pulling off the heads as needed. Advantages:
* Properly spinlocked and SMP-aware. The earlier timer implementation
relied on only CPU 0 doing timeout work, and on an irq_lock() being
taken before entry (something that was violated in a few spots).
Now any CPU can wake up for an event (or all of them) and everything
works correctly.
* The *_thread_timeout() API is now expressible as a clean wrapping
(just one liners) around the lower-level interface based on function
pointer callbacks. As a result the timeout objects no longer need
to store backpointers to the thread and wait_q and have shrunk by
33%.
* MUCH smaller, to the tune of hundreds of lines of code removed.
* Future proof, in that all operations on the queue are now fronted by
just two entry points (_add_timeout() and z_clock_announce()) which
can easily be augmented with fancier data structures.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
_timeout_remaining_get() was a function on a struct _timeout, doing
iteration on the timeout list, but it was defined in timer.c (the
higher level abstraction).
Move it to where it belongs. Also have it return ticks instead of ms
to conform to scheme in the rest of the timeout API. And rename it to
a more standard zephyr name.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Add the callback parameter to add_timeout(), and remove the thread
argument. Now the "low level" timeout API can be expressed without
reference to threads.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>