zephyr/drivers/clock_control/clock_stm32_ll_common.c
Kevin ORourke 9bf0a24f2e drivers: clock_control: stm32: clock_control_on
Make clock_control_on for STM32 behave the same as the HAL,
delaying after enabling peripheral clocks. Otherwise it may return
before the clock is actually enabled, causing subsequent writes to
peripheral registers to be silently ignored.

Signed-off-by: Kevin ORourke <kevin.orourke@ferroamp.se>
2024-03-25 09:31:54 +01:00

852 lines
22 KiB
C

/*
* Copyright (c) 2017-2022 Linaro Limited.
* Copyright (c) 2017 RnDity Sp. z o.o.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_system.h>
#include <stm32_ll_utils.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "clock_stm32_ll_common.h"
#include "clock_stm32_ll_mco.h"
#include "stm32_hsem.h"
/* Macros to fill up prescaler values */
#define z_hsi_divider(v) LL_RCC_HSI_DIV_ ## v
#define hsi_divider(v) z_hsi_divider(v)
#define fn_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define ahb_prescaler(v) fn_ahb_prescaler(v)
#define fn_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) fn_apb1_prescaler(v)
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
#define fn_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) fn_apb2_prescaler(v)
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler)
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK4_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB4Prescaler
#elif DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK3_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB3Prescaler
#else
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHBPrescaler
#endif
#if defined(RCC_PLLCFGR_PLLPEN)
#define RCC_PLLP_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN)
#else
#define RCC_PLLP_ENABLE()
#endif /* RCC_PLLCFGR_PLLPEN */
#if defined(RCC_PLLCFGR_PLLQEN)
#define RCC_PLLQ_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN)
#else
#define RCC_PLLQ_ENABLE()
#endif /* RCC_PLLCFGR_PLLQEN */
/**
* @brief Return frequency for pll with 2 dividers and a multiplier
*/
__unused
static uint32_t get_pll_div_frequency(uint32_t pllsrc_freq,
int pllm_div,
int plln_mul,
int pllout_div)
{
__ASSERT_NO_MSG(pllm_div && pllout_div);
return pllsrc_freq / pllm_div * plln_mul / pllout_div;
}
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
return clock / prescaler;
}
__unused
static uint32_t get_msi_frequency(void)
{
#if defined(STM32_MSI_ENABLED)
#if !defined(LL_RCC_MSIRANGESEL_RUN)
return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
#else
return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGESEL_RUN,
LL_RCC_MSI_GetRange());
#endif
#endif
return 0;
}
/** @brief Verifies clock is part of active clock configuration */
__unused
static int enabled_clock(uint32_t src_clk)
{
int r = 0;
switch (src_clk) {
#if defined(STM32_SRC_SYSCLK)
case STM32_SRC_SYSCLK:
break;
#endif /* STM32_SRC_SYSCLK */
#if defined(STM32_SRC_PCLK)
case STM32_SRC_PCLK:
break;
#endif /* STM32_SRC_PCLK */
#if defined(STM32_SRC_HSE)
case STM32_SRC_HSE:
if (!IS_ENABLED(STM32_HSE_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_HSE */
#if defined(STM32_SRC_HSI)
case STM32_SRC_HSI:
if (!IS_ENABLED(STM32_HSI_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_HSI */
#if defined(STM32_SRC_LSE)
case STM32_SRC_LSE:
if (!IS_ENABLED(STM32_LSE_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_LSE */
#if defined(STM32_SRC_LSI)
case STM32_SRC_LSI:
if (!IS_ENABLED(STM32_LSI_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_LSI */
#if defined(STM32_SRC_HSI14)
case STM32_SRC_HSI14:
if (!IS_ENABLED(STM32_HSI14_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_HSI14 */
#if defined(STM32_SRC_HSI48)
case STM32_SRC_HSI48:
if (!IS_ENABLED(STM32_HSI48_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_HSI48 */
#if defined(STM32_SRC_MSI)
case STM32_SRC_MSI:
if (!IS_ENABLED(STM32_MSI_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_MSI */
#if defined(STM32_SRC_PLLCLK)
case STM32_SRC_PLLCLK:
if (!IS_ENABLED(STM32_PLL_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLLCLK */
#if defined(STM32_SRC_PLL_P)
case STM32_SRC_PLL_P:
if (!IS_ENABLED(STM32_PLL_P_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLL_P */
#if defined(STM32_SRC_PLL_Q)
case STM32_SRC_PLL_Q:
if (!IS_ENABLED(STM32_PLL_Q_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLL_Q */
#if defined(STM32_SRC_PLL_R)
case STM32_SRC_PLL_R:
if (!IS_ENABLED(STM32_PLL_R_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLL_R */
#if defined(STM32_SRC_PLLI2S_R)
case STM32_SRC_PLLI2S_R:
if (!IS_ENABLED(STM32_PLLI2S_R_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLLI2S_R */
default:
return -ENOTSUP;
}
return r;
}
static inline int stm32_clock_control_on(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
volatile int temp;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attemp to change a wrong periph clock bit */
return -ENOTSUP;
}
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
/* Delay after enabling the clock, to allow it to become active.
* See (for example) RM0440 7.2.17
*/
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus);
UNUSED(temp);
return 0;
}
static inline int stm32_clock_control_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attemp to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
return 0;
}
static inline int stm32_clock_control_configure(const struct device *dev,
clock_control_subsys_t sub_system,
void *data)
{
#if defined(STM32_SRC_SYSCLK)
/* At least one alt src clock available */
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
int err;
ARG_UNUSED(dev);
ARG_UNUSED(data);
err = enabled_clock(pclken->bus);
if (err < 0) {
/* Attempt to configure a src clock not available or not valid */
return err;
}
if (pclken->enr == NO_SEL) {
/* Domain clock is fixed. Nothing to set. Exit */
return 0;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
return 0;
#else
/* No src clock available: Not supported */
return -ENOTSUP;
#endif
}
static int stm32_clock_control_get_subsys_rate(const struct device *clock,
clock_control_subsys_t sub_system,
uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
/*
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
* since it will be updated after clock configuration and hence
* more likely to contain actual clock speed
*/
uint32_t ahb_clock = SystemCoreClock;
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER);
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER);
#elif defined(STM32_CLOCK_BUS_APB2)
/* APB2 bus exists, but w/o dedicated prescaler */
uint32_t apb2_clock = apb1_clock;
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
uint32_t ahb3_clock = get_bus_clock(ahb_clock * STM32_CPU1_PRESCALER,
STM32_AHB3_PRESCALER);
#elif defined(STM32_CLOCK_BUS_AHB3)
/* AHB3 bus exists, but w/o dedicated prescaler */
uint32_t ahb3_clock = ahb_clock;
#endif
#if defined(STM32_SRC_PCLK)
if (pclken->bus == STM32_SRC_PCLK) {
/* STM32_SRC_PCLK can't be used to request a subsys freq */
/* Use STM32_CLOCK_BUS_FOO instead. */
return -ENOTSUP;
}
#endif
ARG_UNUSED(clock);
switch (pclken->bus) {
case STM32_CLOCK_BUS_AHB1:
#if defined(STM32_CLOCK_BUS_AHB2)
case STM32_CLOCK_BUS_AHB2:
#endif
#if defined(STM32_CLOCK_BUS_IOP)
case STM32_CLOCK_BUS_IOP:
#endif
*rate = ahb_clock;
break;
#if defined(STM32_CLOCK_BUS_AHB3)
case STM32_CLOCK_BUS_AHB3:
*rate = ahb3_clock;
break;
#endif
case STM32_CLOCK_BUS_APB1:
#if defined(STM32_CLOCK_BUS_APB1_2)
case STM32_CLOCK_BUS_APB1_2:
#endif
*rate = apb1_clock;
break;
#if defined(STM32_CLOCK_BUS_APB2)
case STM32_CLOCK_BUS_APB2:
*rate = apb2_clock;
break;
#endif
#if defined(STM32_CLOCK_BUS_APB3)
case STM32_CLOCK_BUS_APB3:
/* STM32WL: AHB3 and APB3 share the same clock and prescaler. */
*rate = ahb3_clock;
break;
#endif
#if defined(STM32_SRC_SYSCLK)
case STM32_SRC_SYSCLK:
*rate = SystemCoreClock * STM32_CORE_PRESCALER;
break;
#endif
#if defined(STM32_SRC_PLLCLK) & defined(STM32_SYSCLK_SRC_PLL)
case STM32_SRC_PLLCLK:
if (get_pllout_frequency() == 0) {
return -EIO;
}
*rate = get_pllout_frequency();
break;
#endif
#if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED
case STM32_SRC_PLL_P:
*rate = get_pll_div_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
#endif
#if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED
case STM32_SRC_PLL_Q:
*rate = get_pll_div_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_Q_DIVISOR);
break;
#endif
#if defined(STM32_SRC_PLL_R) & STM32_PLL_R_ENABLED
case STM32_SRC_PLL_R:
*rate = get_pll_div_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
break;
#endif
#if defined(STM32_SRC_PLLI2S_R) & STM32_PLLI2S_ENABLED
case STM32_SRC_PLLI2S_R:
*rate = get_pll_div_frequency(get_pllsrc_frequency(),
STM32_PLLI2S_M_DIVISOR,
STM32_PLLI2S_N_MULTIPLIER,
STM32_PLLI2S_R_DIVISOR);
break;
#endif /* STM32_SRC_PLLI2S_R */
/* PLLSAI1x not supported yet */
/* PLLSAI2x not supported yet */
#if defined(STM32_SRC_LSE)
case STM32_SRC_LSE:
*rate = STM32_LSE_FREQ;
break;
#endif
#if defined(STM32_SRC_LSI)
case STM32_SRC_LSI:
*rate = STM32_LSI_FREQ;
break;
#endif
#if defined(STM32_SRC_HSI)
case STM32_SRC_HSI:
*rate = STM32_HSI_FREQ;
break;
#endif
#if defined(STM32_SRC_MSI)
case STM32_SRC_MSI:
*rate = get_msi_frequency();
break;
#endif
#if defined(STM32_SRC_HSE)
case STM32_SRC_HSE:
*rate = STM32_HSE_FREQ;
break;
#endif
#if defined(STM32_HSI48_ENABLED)
case STM32_SRC_HSI48:
*rate = STM32_HSI48_FREQ;
break;
#endif /* STM32_HSI48_ENABLED */
default:
return -ENOTSUP;
}
return 0;
}
static enum clock_control_status stm32_clock_control_get_status(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) {
/* Gated clocks */
if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr)
== pclken->enr) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
} else {
/* Domain clock sources */
if (enabled_clock(pclken->bus) == 0) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
}
}
static struct clock_control_driver_api stm32_clock_control_api = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
.get_status = stm32_clock_control_get_status,
.configure = stm32_clock_control_configure,
};
/*
* Unconditionally switch the system clock source to HSI.
*/
__unused
static void stm32_clock_switch_to_hsi(void)
{
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
}
__unused
static void set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED)
/*
* Case of chain-loaded applications:
* Switch to HSI and disable the PLL before configuration.
* (Switching to HSI makes sure we have a SYSCLK source in
* case we're currently running from the PLL we're about to
* turn off and reconfigure.)
*
*/
if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL) {
stm32_clock_switch_to_hsi();
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
}
LL_RCC_PLL_Disable();
#endif
#if defined(STM32_PLL2_ENABLED)
/*
* Disable PLL2 after switching to HSI for SysClk
* and disabling PLL, but before enabling PLL again,
* since PLL source can be PLL2.
*/
LL_RCC_PLL2_Disable();
config_pll2();
/* Enable PLL2 */
LL_RCC_PLL2_Enable();
while (LL_RCC_PLL2_IsReady() != 1U) {
/* Wait for PLL2 ready */
}
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL_ENABLED)
#if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLP, pllp(STM32_PLL_P_DIVISOR));
RCC_PLLP_ENABLE();
#endif
#if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ, pllq(STM32_PLL_Q_DIVISOR));
RCC_PLLQ_ENABLE();
#endif
config_pll_sysclock();
/* Enable PLL */
LL_RCC_PLL_Enable();
while (LL_RCC_PLL_IsReady() != 1U) {
/* Wait for PLL ready */
}
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLLI2S_ENABLED)
config_plli2s();
/* Enable PLL */
LL_RCC_PLLI2S_Enable();
while (LL_RCC_PLLI2S_IsReady() != 1U) {
/* Wait for PLL ready */
}
#endif /* STM32_PLLI2S_ENABLED */
}
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
#if defined(STM32_HSE_BYPASS)
/* Check if need to enable HSE bypass feature or not */
if (IS_ENABLED(STM32_HSE_BYPASS)) {
LL_RCC_HSE_EnableBypass();
} else {
LL_RCC_HSE_DisableBypass();
}
#endif
#if STM32_HSE_TCXO
LL_RCC_HSE_EnableTcxo();
#endif
#if STM32_HSE_DIV2
LL_RCC_HSE_EnableDiv2();
#endif
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
/* Wait for HSE ready */
}
/* Check if we need to enable HSE clock security system or not */
#if STM32_HSE_CSS
z_arm_nmi_set_handler(HAL_RCC_NMI_IRQHandler);
LL_RCC_HSE_EnableCSS();
#endif /* STM32_HSE_CSS */
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
#if STM32_HSI_DIV_ENABLED
LL_RCC_SetHSIDiv(hsi_divider(STM32_HSI_DIVISOR));
#endif
}
#if defined(STM32_MSI_ENABLED)
if (IS_ENABLED(STM32_MSI_ENABLED)) {
/* Set MSI Range */
#if defined(RCC_CR_MSIRGSEL)
LL_RCC_MSI_EnableRangeSelection();
#endif /* RCC_CR_MSIRGSEL */
#if defined(CONFIG_SOC_SERIES_STM32L0X) || defined(CONFIG_SOC_SERIES_STM32L1X)
LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_ICSCR_MSIRANGE_Pos);
#else
LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_CR_MSIRANGE_Pos);
#endif /* CONFIG_SOC_SERIES_STM32L0X || CONFIG_SOC_SERIES_STM32L1X */
#if STM32_MSI_PLL_MODE
/* Enable MSI hardware auto calibration */
LL_RCC_MSI_EnablePLLMode();
#endif
LL_RCC_MSI_SetCalibTrimming(0);
/* Enable MSI if not enabled */
if (LL_RCC_MSI_IsReady() != 1) {
/* Enable MSI */
LL_RCC_MSI_Enable();
while (LL_RCC_MSI_IsReady() != 1) {
/* Wait for MSI ready */
}
}
}
#endif /* STM32_MSI_ENABLED */
if (IS_ENABLED(STM32_LSI_ENABLED)) {
#if defined(CONFIG_SOC_SERIES_STM32WBX)
LL_RCC_LSI1_Enable();
while (LL_RCC_LSI1_IsReady() != 1) {
}
#else
LL_RCC_LSI_Enable();
while (LL_RCC_LSI_IsReady() != 1) {
}
#endif
}
if (IS_ENABLED(STM32_LSE_ENABLED)) {
/* LSE belongs to the back-up domain, enable access.*/
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPR_DBP)
/* Set the DBP bit in the Power control register 1 (PWR_CR1) */
LL_PWR_EnableBkUpAccess();
while (!LL_PWR_IsEnabledBkUpAccess()) {
/* Wait for Backup domain access */
}
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
#if STM32_LSE_DRIVING
/* Configure driving capability */
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
#endif
if (IS_ENABLED(STM32_LSE_BYPASS)) {
/* Configure LSE bypass */
LL_RCC_LSE_EnableBypass();
}
/* Enable LSE Oscillator (32.768 kHz) */
LL_RCC_LSE_Enable();
while (!LL_RCC_LSE_IsReady()) {
/* Wait for LSE ready */
}
#ifdef RCC_BDCR_LSESYSEN
LL_RCC_LSE_EnablePropagation();
/* Wait till LSESYS is ready */
while (!LL_RCC_LSE_IsPropagationReady()) {
}
#endif /* RCC_BDCR_LSESYSEN */
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_DisableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
}
#if defined(STM32_HSI14_ENABLED)
/* For all series with HSI 14 clock support */
if (IS_ENABLED(STM32_HSI14_ENABLED)) {
LL_RCC_HSI14_Enable();
while (LL_RCC_HSI14_IsReady() != 1) {
}
}
#endif /* STM32_HSI48_ENABLED */
#if defined(STM32_HSI48_ENABLED)
/* For all series with HSI 48 clock support */
if (IS_ENABLED(STM32_HSI48_ENABLED)) {
#if defined(CONFIG_SOC_SERIES_STM32L0X)
/*
* HSI48 requires VREFINT (see RM0376 section 7.2.4).
* The SYSCFG is needed to control VREFINT, so clock it.
*/
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SYSCFG);
LL_SYSCFG_VREFINT_EnableHSI48();
#endif /* CONFIG_SOC_SERIES_STM32L0X */
/*
* STM32WB: Lock the CLK48 HSEM and do not release to prevent
* M0 core to disable this clock (used for RNG on M0).
* No-op on other series.
*/
z_stm32_hsem_lock(CFG_HW_CLK48_CONFIG_SEMID, HSEM_LOCK_DEFAULT_RETRY);
LL_RCC_HSI48_Enable();
while (LL_RCC_HSI48_IsReady() != 1) {
}
}
#endif /* STM32_HSI48_ENABLED */
}
/**
* @brief Initialize clocks for the stm32
*
* This routine is called to enable and configure the clocks and PLL
* of the soc on the board. It depends on the board definition.
* This function is called on the startup and also to restore the config
* when exiting for low power mode.
*
* @param dev clock device struct
*
* @return 0
*/
int stm32_clock_control_init(const struct device *dev)
{
ARG_UNUSED(dev);
/* Some clocks would be activated by default */
config_enable_default_clocks();
#if defined(FLASH_ACR_LATENCY)
uint32_t old_flash_freq;
uint32_t new_flash_freq;
old_flash_freq = RCC_CALC_FLASH_FREQ(HAL_RCC_GetSysClockFreq(),
GET_CURRENT_FLASH_PRESCALER());
new_flash_freq = RCC_CALC_FLASH_FREQ(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
STM32_FLASH_PRESCALER);
/* If HCLK increases, set flash latency before any clock setting */
if (old_flash_freq < new_flash_freq) {
LL_SetFlashLatency(new_flash_freq);
}
#endif /* FLASH_ACR_LATENCY */
/* Set up indiviual enabled clocks */
set_up_fixed_clock_sources();
/* Set up PLLs */
set_up_plls();
if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) &&
(STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) &&
(MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) {
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);
} else {
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER));
}
#if STM32_SYSCLK_SRC_PLL
/* Set PLL as System Clock Source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) {
}
#elif STM32_SYSCLK_SRC_HSE
/* Set HSE as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
}
#elif STM32_SYSCLK_SRC_MSI
/* Set MSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) {
}
#elif STM32_SYSCLK_SRC_HSI
stm32_clock_switch_to_hsi();
#endif /* STM32_SYSCLK_SRC_... */
if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) &&
(STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) &&
(MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) {
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER));
}
#if defined(FLASH_ACR_LATENCY)
/* If HCLK not increased, set flash latency after all clock setting */
if (old_flash_freq >= new_flash_freq) {
LL_SetFlashLatency(new_flash_freq);
}
#endif /* FLASH_ACR_LATENCY */
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
/* Set bus prescalers prescaler */
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER));
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), cpu2_prescaler)
LL_C2_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CPU2_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
LL_RCC_SetAHB3Prescaler(ahb_prescaler(STM32_AHB3_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler)
LL_RCC_SetAHB4Prescaler(ahb_prescaler(STM32_AHB4_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc_prescaler)
LL_RCC_SetADCClockSource(adc_prescaler(STM32_ADC_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc12_prescaler)
LL_RCC_SetADCClockSource(adc_prescaler(STM32_ADC12_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc34_prescaler)
LL_RCC_SetADCClockSource(adc_prescaler(STM32_ADC34_PRESCALER));
#endif
/* configure MCO1/MCO2 based on Kconfig */
stm32_clock_control_mco_init();
return 0;
}
#if defined(STM32_HSE_CSS)
void __weak stm32_hse_css_callback(void) {}
/* Called by the HAL in response to an HSE CSS interrupt */
void HAL_RCC_CSSCallback(void)
{
stm32_hse_css_callback();
}
#endif
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
&stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);