9d7a3fb647
Support SFDP probe in flexspi nor driver. This probe will allow the flash driver to dynamically configure quad spi flashes for 1-4-4 mode, expanding the flash chips supported with this driver. The following data is read from the SFDP header: - quad enable method - fast read command (1-4-4 is maximum supported) Fixes #55379 Signed-off-by: Daniel DeGrasse <daniel.degrasse@nxp.com>
1160 lines
34 KiB
C
1160 lines
34 KiB
C
/*
|
|
* Copyright 2020,2023 NXP
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT nxp_imx_flexspi_nor
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/drivers/flash.h>
|
|
#include <zephyr/irq.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include "spi_nor.h"
|
|
#include "jesd216.h"
|
|
#include "memc_mcux_flexspi.h"
|
|
|
|
#ifdef CONFIG_HAS_MCUX_CACHE
|
|
#include <fsl_cache.h>
|
|
#endif
|
|
|
|
#define NOR_WRITE_SIZE 1
|
|
#define NOR_ERASE_VALUE 0xff
|
|
|
|
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
|
|
static uint8_t nor_write_buf[SPI_NOR_PAGE_SIZE];
|
|
#endif
|
|
|
|
/*
|
|
* NOTE: If CONFIG_FLASH_MCUX_FLEXSPI_XIP is selected, Any external functions
|
|
* called while interacting with the flexspi MUST be relocated to SRAM or ITCM
|
|
* at runtime, so that the chip does not access the flexspi to read program
|
|
* instructions while it is being written to
|
|
*
|
|
* Additionally, no data used by this driver should be stored in flash.
|
|
*/
|
|
#if defined(CONFIG_FLASH_MCUX_FLEXSPI_XIP) && (CONFIG_FLASH_LOG_LEVEL > 0)
|
|
#warning "Enabling flash driver logging and XIP mode simultaneously can cause \
|
|
read-while-write hazards. This configuration is not recommended."
|
|
#endif
|
|
|
|
LOG_MODULE_REGISTER(flash_flexspi_nor, CONFIG_FLASH_LOG_LEVEL);
|
|
|
|
enum {
|
|
READ,
|
|
PAGE_PROGRAM,
|
|
READ_STATUS,
|
|
WRITE_ENABLE,
|
|
ERASE_SECTOR,
|
|
ERASE_BLOCK,
|
|
READ_ID,
|
|
READ_STATUS_REG,
|
|
ERASE_CHIP,
|
|
READ_JESD216,
|
|
/* Used for temporary commands during initialization */
|
|
SCRATCH_CMD,
|
|
SCRATCH_CMD2,
|
|
/* Must be last entry */
|
|
FLEXSPI_INSTR_END,
|
|
};
|
|
|
|
struct flash_flexspi_nor_config {
|
|
/* Note: don't use this controller reference in code. It is
|
|
* only used during init to copy the device structure from ROM
|
|
* into a RAM structure
|
|
*/
|
|
const struct device *controller;
|
|
};
|
|
|
|
/* Device variables used in critical sections should be in this structure */
|
|
struct flash_flexspi_nor_data {
|
|
struct device controller;
|
|
flexspi_device_config_t config;
|
|
flexspi_port_t port;
|
|
bool legacy_poll;
|
|
struct flash_pages_layout layout;
|
|
struct flash_parameters flash_parameters;
|
|
};
|
|
|
|
/* Initial LUT table */
|
|
static const uint32_t flash_flexspi_nor_base_lut[][MEMC_FLEXSPI_CMD_PER_SEQ] = {
|
|
/* 1S-1S-1S flash read command, should be compatible with all SPI nor flashes */
|
|
[READ] = {
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_READ,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 24),
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
|
|
},
|
|
[READ_JESD216] = {
|
|
/* Install read SFDP command */
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, JESD216_CMD_READ_SFDP,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 24),
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 8,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x4),
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
|
|
},
|
|
/* Standard 1S-1S-1S flash write command, can be switched to 1S-1S-4S when QE is set */
|
|
[PAGE_PROGRAM] = {
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
|
|
},
|
|
|
|
[WRITE_ENABLE] = {
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WREN,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
|
|
},
|
|
|
|
[ERASE_SECTOR] = {
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
|
|
},
|
|
|
|
[ERASE_BLOCK] = {
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
|
|
},
|
|
|
|
[ERASE_CHIP] = {
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_CE,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
|
|
},
|
|
|
|
[READ_ID] = {
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDID,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01),
|
|
},
|
|
|
|
[READ_STATUS_REG] = {
|
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01),
|
|
},
|
|
};
|
|
|
|
/* Helper so we can read flash ID without flash access for XIP */
|
|
static int flash_flexspi_nor_read_id_helper(struct flash_flexspi_nor_data *data,
|
|
uint8_t *vendor_id)
|
|
{
|
|
uint32_t buffer = 0;
|
|
int ret;
|
|
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = 0,
|
|
.port = data->port,
|
|
.cmdType = kFLEXSPI_Read,
|
|
.SeqNumber = 1,
|
|
.seqIndex = READ_ID,
|
|
.data = &buffer,
|
|
.dataSize = 3,
|
|
};
|
|
|
|
LOG_DBG("Reading id");
|
|
|
|
ret = memc_flexspi_transfer(&data->controller, &transfer);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
memcpy(vendor_id, &buffer, 3);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int flash_flexspi_nor_read_id(const struct device *dev, uint8_t *vendor_id)
|
|
{
|
|
struct flash_flexspi_nor_data *data = dev->data;
|
|
|
|
return flash_flexspi_nor_read_id_helper(data, vendor_id);
|
|
}
|
|
|
|
static int flash_flexspi_nor_read_status(struct flash_flexspi_nor_data *data,
|
|
uint32_t *status)
|
|
{
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = 0,
|
|
.port = data->port,
|
|
.cmdType = kFLEXSPI_Read,
|
|
.SeqNumber = 1,
|
|
.seqIndex = READ_STATUS_REG,
|
|
.data = status,
|
|
.dataSize = 1,
|
|
};
|
|
|
|
LOG_DBG("Reading status register");
|
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
}
|
|
|
|
static int flash_flexspi_nor_write_enable(struct flash_flexspi_nor_data *data)
|
|
{
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = 0,
|
|
.port = data->port,
|
|
.cmdType = kFLEXSPI_Command,
|
|
.SeqNumber = 1,
|
|
.seqIndex = WRITE_ENABLE,
|
|
.data = NULL,
|
|
.dataSize = 0,
|
|
};
|
|
|
|
LOG_DBG("Enabling write");
|
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
}
|
|
|
|
static int flash_flexspi_nor_erase_sector(struct flash_flexspi_nor_data *data,
|
|
off_t offset)
|
|
{
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = offset,
|
|
.port = data->port,
|
|
.cmdType = kFLEXSPI_Command,
|
|
.SeqNumber = 1,
|
|
.seqIndex = ERASE_SECTOR,
|
|
.data = NULL,
|
|
.dataSize = 0,
|
|
};
|
|
|
|
LOG_DBG("Erasing sector at 0x%08zx", (ssize_t) offset);
|
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
}
|
|
|
|
static int flash_flexspi_nor_erase_block(struct flash_flexspi_nor_data *data,
|
|
off_t offset)
|
|
{
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = offset,
|
|
.port = data->port,
|
|
.cmdType = kFLEXSPI_Command,
|
|
.SeqNumber = 1,
|
|
.seqIndex = ERASE_BLOCK,
|
|
.data = NULL,
|
|
.dataSize = 0,
|
|
};
|
|
|
|
LOG_DBG("Erasing block at 0x%08zx", (ssize_t) offset);
|
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
}
|
|
|
|
static int flash_flexspi_nor_erase_chip(struct flash_flexspi_nor_data *data)
|
|
{
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = 0,
|
|
.port = data->port,
|
|
.cmdType = kFLEXSPI_Command,
|
|
.SeqNumber = 1,
|
|
.seqIndex = ERASE_CHIP,
|
|
.data = NULL,
|
|
.dataSize = 0,
|
|
};
|
|
|
|
LOG_DBG("Erasing chip");
|
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
}
|
|
|
|
static int flash_flexspi_nor_page_program(struct flash_flexspi_nor_data *data,
|
|
off_t offset, const void *buffer, size_t len)
|
|
{
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = offset,
|
|
.port = data->port,
|
|
.cmdType = kFLEXSPI_Write,
|
|
.SeqNumber = 1,
|
|
.seqIndex = PAGE_PROGRAM,
|
|
.data = (uint32_t *) buffer,
|
|
.dataSize = len,
|
|
};
|
|
|
|
LOG_DBG("Page programming %d bytes to 0x%08zx", len, (ssize_t) offset);
|
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
}
|
|
|
|
static int flash_flexspi_nor_wait_bus_busy(struct flash_flexspi_nor_data *data)
|
|
{
|
|
uint32_t status = 0;
|
|
int ret;
|
|
|
|
while (1) {
|
|
ret = flash_flexspi_nor_read_status(data, &status);
|
|
LOG_DBG("status: 0x%x", status);
|
|
if (ret) {
|
|
LOG_ERR("Could not read status");
|
|
return ret;
|
|
}
|
|
|
|
if (data->legacy_poll) {
|
|
if ((status & BIT(0)) == 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (status & BIT(7)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flash_flexspi_nor_read(const struct device *dev, off_t offset,
|
|
void *buffer, size_t len)
|
|
{
|
|
struct flash_flexspi_nor_data *data = dev->data;
|
|
uint8_t *src = memc_flexspi_get_ahb_address(&data->controller,
|
|
data->port,
|
|
offset);
|
|
|
|
memcpy(buffer, src, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flash_flexspi_nor_write(const struct device *dev, off_t offset,
|
|
const void *buffer, size_t len)
|
|
{
|
|
struct flash_flexspi_nor_data *data = dev->data;
|
|
size_t size = len;
|
|
uint8_t *src = (uint8_t *) buffer;
|
|
int i;
|
|
unsigned int key = 0;
|
|
|
|
uint8_t *dst = memc_flexspi_get_ahb_address(&data->controller,
|
|
data->port,
|
|
offset);
|
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) {
|
|
/*
|
|
* ==== ENTER CRITICAL SECTION ====
|
|
* No flash access should be performed in critical section. All
|
|
* code and data accessed must reside in ram.
|
|
*/
|
|
key = irq_lock();
|
|
}
|
|
|
|
while (len) {
|
|
/* If the offset isn't a multiple of the NOR page size, we first need
|
|
* to write the remaining part that fits, otherwise the write could
|
|
* be wrapped around within the same page
|
|
*/
|
|
i = MIN(SPI_NOR_PAGE_SIZE - (offset % SPI_NOR_PAGE_SIZE), len);
|
|
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
|
|
memcpy(nor_write_buf, src, i);
|
|
#endif
|
|
flash_flexspi_nor_write_enable(data);
|
|
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
|
|
flash_flexspi_nor_page_program(data, offset, nor_write_buf, i);
|
|
#else
|
|
flash_flexspi_nor_page_program(data, offset, src, i);
|
|
#endif
|
|
flash_flexspi_nor_wait_bus_busy(data);
|
|
memc_flexspi_reset(&data->controller);
|
|
src += i;
|
|
offset += i;
|
|
len -= i;
|
|
}
|
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) {
|
|
/* ==== EXIT CRITICAL SECTION ==== */
|
|
irq_unlock(key);
|
|
}
|
|
|
|
#ifdef CONFIG_HAS_MCUX_CACHE
|
|
DCACHE_InvalidateByRange((uint32_t) dst, size);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flash_flexspi_nor_erase(const struct device *dev, off_t offset,
|
|
size_t size)
|
|
{
|
|
struct flash_flexspi_nor_data *data = dev->data;
|
|
const size_t num_sectors = size / SPI_NOR_SECTOR_SIZE;
|
|
const size_t num_blocks = size / SPI_NOR_BLOCK_SIZE;
|
|
|
|
int i;
|
|
unsigned int key = 0;
|
|
|
|
uint8_t *dst = memc_flexspi_get_ahb_address(&data->controller,
|
|
data->port,
|
|
offset);
|
|
|
|
if (offset % SPI_NOR_SECTOR_SIZE) {
|
|
LOG_ERR("Invalid offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (size % SPI_NOR_SECTOR_SIZE) {
|
|
LOG_ERR("Invalid size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) {
|
|
/*
|
|
* ==== ENTER CRITICAL SECTION ====
|
|
* No flash access should be performed in critical section. All
|
|
* code and data accessed must reside in ram.
|
|
*/
|
|
key = irq_lock();
|
|
}
|
|
|
|
if ((offset == 0) && (size == data->config.flashSize * KB(1))) {
|
|
flash_flexspi_nor_write_enable(data);
|
|
flash_flexspi_nor_erase_chip(data);
|
|
flash_flexspi_nor_wait_bus_busy(data);
|
|
memc_flexspi_reset(&data->controller);
|
|
} else if ((0 == (offset % SPI_NOR_BLOCK_SIZE)) && (0 == (size % SPI_NOR_BLOCK_SIZE))) {
|
|
for (i = 0; i < num_blocks; i++) {
|
|
flash_flexspi_nor_write_enable(data);
|
|
flash_flexspi_nor_erase_block(data, offset);
|
|
flash_flexspi_nor_wait_bus_busy(data);
|
|
memc_flexspi_reset(&data->controller);
|
|
offset += SPI_NOR_BLOCK_SIZE;
|
|
}
|
|
} else {
|
|
for (i = 0; i < num_sectors; i++) {
|
|
flash_flexspi_nor_write_enable(data);
|
|
flash_flexspi_nor_erase_sector(data, offset);
|
|
flash_flexspi_nor_wait_bus_busy(data);
|
|
memc_flexspi_reset(&data->controller);
|
|
offset += SPI_NOR_SECTOR_SIZE;
|
|
}
|
|
}
|
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) {
|
|
/* ==== EXIT CRITICAL SECTION ==== */
|
|
irq_unlock(key);
|
|
}
|
|
|
|
#ifdef CONFIG_HAS_MCUX_CACHE
|
|
DCACHE_InvalidateByRange((uint32_t) dst, size);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct flash_parameters *flash_flexspi_nor_get_parameters(
|
|
const struct device *dev)
|
|
{
|
|
struct flash_flexspi_nor_data *data = dev->data;
|
|
|
|
return &data->flash_parameters;
|
|
}
|
|
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
|
|
static void flash_flexspi_nor_pages_layout(const struct device *dev,
|
|
const struct flash_pages_layout **layout, size_t *layout_size)
|
|
{
|
|
struct flash_flexspi_nor_data *data = dev->data;
|
|
|
|
*layout = &data->layout;
|
|
*layout_size = 1;
|
|
}
|
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
|
|
|
|
|
|
/*
|
|
* This function enables quad mode, when supported. Otherwise it
|
|
* returns an error.
|
|
* @param dev: Flexspi device
|
|
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed
|
|
* @param qer: DW15 quad enable parameter
|
|
* @return 0 if quad mode was entered, or -ENOTSUP if quad mode is not supported
|
|
*/
|
|
static int flash_flexspi_nor_quad_enable(struct flash_flexspi_nor_data *data,
|
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ],
|
|
uint8_t qer)
|
|
{
|
|
int ret;
|
|
uint32_t buffer = 0;
|
|
uint16_t bit = 0;
|
|
uint8_t rd_size, wr_size;
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = 0,
|
|
.port = data->port,
|
|
.SeqNumber = 1,
|
|
.data = &buffer,
|
|
};
|
|
flexspi_device_config_t config = {
|
|
.flexspiRootClk = MHZ(50),
|
|
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
|
|
.ARDSeqNumber = 1,
|
|
.ARDSeqIndex = READ,
|
|
};
|
|
|
|
switch (qer) {
|
|
case JESD216_DW15_QER_VAL_NONE:
|
|
/* No init needed */
|
|
return 0;
|
|
case JESD216_DW15_QER_VAL_S2B1v1:
|
|
case JESD216_DW15_QER_VAL_S2B1v4:
|
|
/* Install read and write status command */
|
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
|
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
|
|
|
|
/* Set bit 1 of status register 2 */
|
|
bit = BIT(9);
|
|
rd_size = 2;
|
|
wr_size = 2;
|
|
break;
|
|
case JESD216_DW15_QER_VAL_S1B6:
|
|
/* Install read and write status command */
|
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
|
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
|
|
|
|
/* Set bit 6 of status register 1 */
|
|
bit = BIT(6);
|
|
rd_size = 1;
|
|
wr_size = 1;
|
|
break;
|
|
case JESD216_DW15_QER_VAL_S2B7:
|
|
/* Install read and write status command */
|
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x3F,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
|
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x3E,
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
|
|
|
|
/* Set bit 7 of status register 2 */
|
|
bit = BIT(7);
|
|
rd_size = 1;
|
|
wr_size = 1;
|
|
break;
|
|
case JESD216_DW15_QER_VAL_S2B1v5:
|
|
/* Install read and write status command */
|
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR2,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
|
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
|
|
|
|
/* Set bit 1 of status register 2 */
|
|
bit = BIT(9);
|
|
rd_size = 1;
|
|
wr_size = 2;
|
|
break;
|
|
case JESD216_DW15_QER_VAL_S2B1v6:
|
|
/* Install read and write status command */
|
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR2,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
|
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR2,
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
|
|
|
|
/* Set bit 7 of status register 2 */
|
|
bit = BIT(7);
|
|
rd_size = 1;
|
|
wr_size = 1;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
ret = memc_flexspi_set_device_config(&data->controller,
|
|
&config,
|
|
(uint32_t *)flexspi_lut,
|
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
|
|
data->port);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
transfer.dataSize = rd_size;
|
|
transfer.seqIndex = SCRATCH_CMD;
|
|
transfer.cmdType = kFLEXSPI_Read;
|
|
/* Read status register */
|
|
ret = memc_flexspi_transfer(&data->controller, &transfer);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
buffer |= bit;
|
|
transfer.dataSize = wr_size;
|
|
transfer.seqIndex = SCRATCH_CMD2;
|
|
transfer.cmdType = kFLEXSPI_Write;
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
}
|
|
|
|
/*
|
|
* This function enables 4 byte addressing, when supported. Otherwise it
|
|
* returns an error.
|
|
* @param dev: Flexspi device
|
|
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed
|
|
* @param en4b: DW16 enable 4 byte mode parameter
|
|
* @return 0 if 4 byte mode was entered, or -ENOTSUP if 4 byte mode was not supported
|
|
*/
|
|
static int flash_flexspi_nor_4byte_enable(struct flash_flexspi_nor_data *data,
|
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ],
|
|
uint32_t en4b)
|
|
{
|
|
int ret;
|
|
uint32_t buffer = 0;
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = 0,
|
|
.port = data->port,
|
|
.SeqNumber = 1,
|
|
.data = &buffer,
|
|
};
|
|
flexspi_device_config_t config = {
|
|
.flexspiRootClk = MHZ(50),
|
|
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
|
|
.ARDSeqNumber = 1,
|
|
.ARDSeqIndex = READ,
|
|
};
|
|
if (en4b & BIT(6)) {
|
|
/* Flash is always in 4 byte mode. We just need to configure LUT */
|
|
return 0;
|
|
} else if (en4b & BIT(5)) {
|
|
/* Dedicated vendor instruction set, which we don't support. Exit here */
|
|
return -ENOTSUP;
|
|
} else if (en4b & BIT(4)) {
|
|
/* Set bit 0 of 16 bit configuration register */
|
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB5,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
|
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB1,
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
|
|
ret = memc_flexspi_set_device_config(&data->controller,
|
|
&config,
|
|
(uint32_t *)flexspi_lut,
|
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
|
|
data->port);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
transfer.dataSize = 2;
|
|
transfer.seqIndex = SCRATCH_CMD;
|
|
transfer.cmdType = kFLEXSPI_Read;
|
|
/* Read config register */
|
|
ret = memc_flexspi_transfer(&data->controller, &transfer);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
buffer |= BIT(0);
|
|
/* Set config register */
|
|
transfer.seqIndex = SCRATCH_CMD2;
|
|
transfer.cmdType = kFLEXSPI_Read;
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
} else if (en4b & BIT(1)) {
|
|
/* Issue write enable, then instruction 0xB7 */
|
|
flash_flexspi_nor_write_enable(data);
|
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB7,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
|
|
ret = memc_flexspi_set_device_config(&data->controller,
|
|
&config,
|
|
(uint32_t *)flexspi_lut,
|
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
|
|
data->port);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
transfer.dataSize = 0;
|
|
transfer.seqIndex = SCRATCH_CMD;
|
|
transfer.cmdType = kFLEXSPI_Command;
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
} else if (en4b & BIT(0)) {
|
|
/* Issue instruction 0xB7 */
|
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB7,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
|
|
ret = memc_flexspi_set_device_config(&data->controller,
|
|
&config,
|
|
(uint32_t *)flexspi_lut,
|
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
|
|
data->port);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
transfer.dataSize = 0;
|
|
transfer.seqIndex = SCRATCH_CMD;
|
|
transfer.cmdType = kFLEXSPI_Command;
|
|
return memc_flexspi_transfer(&data->controller, &transfer);
|
|
}
|
|
/* Other methods not supported */
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/*
|
|
* This function configures the FlexSPI to manage the flash device
|
|
* based on values in SFDP header
|
|
* @param data: Flexspi device data
|
|
* @param header: SFDP header for flash
|
|
* @param bfp: basic flash parameters for flash
|
|
* @param flexspi_lut: LUT table, filled with READ LUT command
|
|
* @return 0 on success, or negative value on error
|
|
*/
|
|
static int flash_flexspi_nor_config_flash(struct flash_flexspi_nor_data *data,
|
|
struct jesd216_sfdp_header *header,
|
|
struct jesd216_bfp *bfp,
|
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ])
|
|
{
|
|
struct jesd216_instr instr;
|
|
struct jesd216_bfp_dw16 dw16;
|
|
struct jesd216_bfp_dw15 dw15;
|
|
struct jesd216_bfp_dw14 dw14;
|
|
uint8_t addr_width;
|
|
uint8_t mode_cmd;
|
|
int ret;
|
|
|
|
addr_width = jesd216_bfp_addrbytes(bfp) ==
|
|
JESD216_SFDP_BFP_DW1_ADDRBYTES_VAL_4B ? 32 : 24;
|
|
|
|
/* Check to see if we can enable 4 byte addressing */
|
|
ret = jesd216_bfp_decode_dw16(&header->phdr[0], bfp, &dw16);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Attempt to enable 4 byte addressing */
|
|
ret = flash_flexspi_nor_4byte_enable(data, flexspi_lut, dw16.enter_4ba);
|
|
if (ret == 0) {
|
|
/* Use 4 byte address width */
|
|
addr_width = 32;
|
|
/* Update LUT for ERASE_SECTOR and ERASE_BLOCK to use 32 bit addr */
|
|
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
|
|
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
|
|
}
|
|
/* Extract the read command.
|
|
* Note- enhanced XIP not currently supported, nor is 4-4-4 mode.
|
|
*/
|
|
if (jesd216_bfp_read_support(&header->phdr[0], bfp,
|
|
JESD216_MODE_144, &instr) > 0) {
|
|
LOG_DBG("Enable 144 mode");
|
|
/* Configure for 144 QUAD read mode */
|
|
if (instr.mode_clocks == 2) {
|
|
mode_cmd = kFLEXSPI_Command_MODE8_SDR;
|
|
} else if (instr.mode_clocks == 1) {
|
|
mode_cmd = kFLEXSPI_Command_MODE4_SDR;
|
|
} else if (instr.mode_clocks == 0) {
|
|
/* Just send dummy cycles during mode clock period */
|
|
mode_cmd = kFLEXSPI_Command_DUMMY_SDR;
|
|
} else {
|
|
return -ENOTSUP;
|
|
}
|
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, instr.instr,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, addr_width);
|
|
/* Note- we always set mode bits to 0x0 */
|
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
|
|
mode_cmd, kFLEXSPI_4PAD, 0x00,
|
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, instr.wait_states);
|
|
flexspi_lut[READ][2] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
|
|
/* Read 1S-4S-4S enable method */
|
|
ret = jesd216_bfp_decode_dw15(&header->phdr[0], bfp, &dw15);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = flash_flexspi_nor_quad_enable(data, flexspi_lut, dw15.qer);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
/* Now, install 1S-1S-4S page program command */
|
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_1_4,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
|
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
|
|
|
|
} else if (jesd216_bfp_read_support(&header->phdr[0], bfp,
|
|
JESD216_MODE_122, &instr) > 0) {
|
|
LOG_DBG("Enable 122 mode");
|
|
if (instr.mode_clocks == 4) {
|
|
mode_cmd = kFLEXSPI_Command_MODE8_SDR;
|
|
} else if (instr.mode_clocks == 2) {
|
|
mode_cmd = kFLEXSPI_Command_MODE4_SDR;
|
|
} else if (instr.mode_clocks == 1) {
|
|
mode_cmd = kFLEXSPI_Command_MODE2_SDR;
|
|
} else if (instr.mode_clocks == 0) {
|
|
/* Just send dummy cycles during mode clock period */
|
|
mode_cmd = kFLEXSPI_Command_DUMMY_SDR;
|
|
} else {
|
|
return -ENOTSUP;
|
|
}
|
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, instr.instr,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_2PAD, addr_width);
|
|
/* Note- we always set mode bits to 0x0 */
|
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
|
|
mode_cmd, kFLEXSPI_2PAD, 0x0,
|
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_2PAD, instr.wait_states);
|
|
flexspi_lut[READ][2] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_2PAD, 0x02,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
|
|
/* Now, install 1S-1S-2S page program command */
|
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_1_2,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
|
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_2PAD, 0x4,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
|
|
}
|
|
/* Default to 111 mode if no support exists, leave READ/WRITE untouched */
|
|
|
|
/* Now, read DW14 to determine the polling method we should use while programming */
|
|
ret = jesd216_bfp_decode_dw14(&header->phdr[0], bfp, &dw14);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
if (dw14.poll_options & BIT(1)) {
|
|
/* Read instruction used for polling is 0x70 */
|
|
data->legacy_poll = false;
|
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x70,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
|
|
} else {
|
|
/* Read instruction used for polling is 0x05 */
|
|
data->legacy_poll = true;
|
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Helper so we can avoid flash access while performing SFDP probe */
|
|
static int flash_flexspi_nor_sfdp_read_helper(struct flash_flexspi_nor_data *dev_data,
|
|
off_t offset, void *data, size_t len)
|
|
{
|
|
flexspi_transfer_t transfer = {
|
|
.deviceAddress = offset,
|
|
.port = dev_data->port,
|
|
.cmdType = kFLEXSPI_Read,
|
|
.seqIndex = READ_JESD216,
|
|
.SeqNumber = 1,
|
|
.data = (uint32_t *)data,
|
|
.dataSize = len,
|
|
};
|
|
|
|
/* Get SFDP data */
|
|
return memc_flexspi_transfer(&dev_data->controller, &transfer);
|
|
}
|
|
|
|
|
|
#if defined(CONFIG_FLASH_JESD216_API)
|
|
|
|
static int flash_flexspi_nor_sfdp_read(const struct device *dev,
|
|
off_t offset, void *data, size_t len)
|
|
{
|
|
struct flash_flexspi_nor_data *dev_data = dev->data;
|
|
|
|
return flash_flexspi_nor_sfdp_read_helper(dev_data, offset, data, len);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Checks JEDEC ID of flash. If supported, installs custom LUT table */
|
|
static int flash_flexspi_nor_check_jedec(struct flash_flexspi_nor_data *data,
|
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ])
|
|
{
|
|
int ret;
|
|
uint32_t vendor_id;
|
|
|
|
ret = flash_flexspi_nor_read_id_helper(data, (uint8_t *)&vendor_id);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Switch on manufacturer and vendor ID */
|
|
switch (vendor_id & 0xFFFF) {
|
|
case 0x25C2:
|
|
/* MX25 flash, use 4 byte read/write */
|
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_4READ_4B,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32);
|
|
/* Flash needs 10 dummy cycles */
|
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 10,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04);
|
|
/* Only 1S-4S-4S page program supported */
|
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_4_4_4B,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32);
|
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4,
|
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
|
|
/* Update ERASE commands for 4 byte mode */
|
|
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE_4B,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32);
|
|
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xDC,
|
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32),
|
|
/* Read instruction used for polling is 0x05 */
|
|
data->legacy_poll = true;
|
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
|
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
|
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
|
|
/* Device uses bit 6 of status reg 1 for QE */
|
|
return flash_flexspi_nor_quad_enable(data, flexspi_lut, JESD216_DW15_QER_VAL_S1B6);
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
}
|
|
|
|
/* Probe parameters from flash SFDP header, and use them to configure the FlexSPI */
|
|
static int flash_flexspi_nor_probe(struct flash_flexspi_nor_data *data)
|
|
{
|
|
uint32_t flexspi_lut[FLEXSPI_INSTR_END][MEMC_FLEXSPI_CMD_PER_SEQ] = {0};
|
|
/* JESD216B defines up to 23 basic flash parameters */
|
|
uint32_t param_buf[23];
|
|
/* Space to store SFDP header and first parameter header */
|
|
uint8_t sfdp_buf[JESD216_SFDP_SIZE(1)] __aligned(4);
|
|
struct jesd216_bfp *bfp = (struct jesd216_bfp *)param_buf;
|
|
struct jesd216_sfdp_header *header = (struct jesd216_sfdp_header *)sfdp_buf;
|
|
int ret;
|
|
unsigned int key = 0U;
|
|
|
|
flexspi_device_config_t config = {
|
|
.flexspiRootClk = MHZ(50),
|
|
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
|
|
.ARDSeqNumber = 1,
|
|
.ARDSeqIndex = READ,
|
|
};
|
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) {
|
|
/*
|
|
* ==== ENTER CRITICAL SECTION ====
|
|
* No flash access should be performed in critical section. All
|
|
* code and data accessed must reside in ram.
|
|
*/
|
|
key = irq_lock();
|
|
memc_flexspi_wait_bus_idle(&data->controller);
|
|
}
|
|
|
|
/* SFDP spec requires that we downclock the FlexSPI to 50MHz or less */
|
|
ret = memc_flexspi_update_clock(&data->controller, &config,
|
|
data->port, MHZ(50));
|
|
if (ret < 0) {
|
|
goto _exit;
|
|
}
|
|
|
|
/* Setup initial LUT table and FlexSPI configuration */
|
|
memcpy(flexspi_lut, flash_flexspi_nor_base_lut, sizeof(flash_flexspi_nor_base_lut));
|
|
|
|
ret = memc_flexspi_set_device_config(&data->controller, &config,
|
|
(uint32_t *)flexspi_lut,
|
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
|
|
data->port);
|
|
if (ret < 0) {
|
|
goto _exit;
|
|
}
|
|
|
|
/* First, check if the JEDEC ID of this flash has explicit support
|
|
* in this driver
|
|
*/
|
|
ret = flash_flexspi_nor_check_jedec(data, flexspi_lut);
|
|
if (ret == 0) {
|
|
/* Flash was supported, SFDP probe not needed */
|
|
goto _program_lut;
|
|
}
|
|
|
|
ret = flash_flexspi_nor_sfdp_read_helper(data, 0, sfdp_buf, sizeof(sfdp_buf));
|
|
if (ret < 0) {
|
|
goto _exit;
|
|
}
|
|
|
|
LOG_DBG("SFDP header magic: 0x%x", header->magic);
|
|
if (jesd216_sfdp_magic(header) != JESD216_SFDP_MAGIC) {
|
|
/* Header was read incorrectly */
|
|
LOG_WRN("Invalid header, using legacy SPI mode");
|
|
data->legacy_poll = true;
|
|
goto _program_lut;
|
|
}
|
|
|
|
if (header->phdr[0].len_dw > ARRAY_SIZE(param_buf)) {
|
|
/* Not enough space to read parameter table */
|
|
ret = -ENOBUFS;
|
|
goto _exit;
|
|
}
|
|
|
|
/* Read basic flash parameter table */
|
|
ret = flash_flexspi_nor_sfdp_read_helper(data,
|
|
jesd216_param_addr(&header->phdr[0]),
|
|
param_buf,
|
|
sizeof(uint32_t) * header->phdr[0].len_dw);
|
|
if (ret < 0) {
|
|
goto _exit;
|
|
}
|
|
|
|
/* Configure flash */
|
|
ret = flash_flexspi_nor_config_flash(data, header, bfp, flexspi_lut);
|
|
if (ret < 0) {
|
|
goto _exit;
|
|
}
|
|
|
|
_program_lut:
|
|
/*
|
|
* Update the FlexSPI with the config structure provided
|
|
* from devicetree and the configured LUT
|
|
*/
|
|
ret = memc_flexspi_set_device_config(&data->controller, &data->config,
|
|
(uint32_t *)flexspi_lut,
|
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
|
|
data->port);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
_exit:
|
|
memc_flexspi_reset(&data->controller);
|
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) {
|
|
/* ==== EXIT CRITICAL SECTION ==== */
|
|
irq_unlock(key);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int flash_flexspi_nor_init(const struct device *dev)
|
|
{
|
|
const struct flash_flexspi_nor_config *config = dev->config;
|
|
struct flash_flexspi_nor_data *data = dev->data;
|
|
uint32_t vendor_id;
|
|
|
|
/* First step- use ROM pointer to controller device to create
|
|
* a copy of the device structure in RAM we can use while in
|
|
* critical sections of code.
|
|
*/
|
|
memcpy(&data->controller, config->controller, sizeof(struct device));
|
|
|
|
if (!device_is_ready(&data->controller)) {
|
|
LOG_ERR("Controller device is not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (flash_flexspi_nor_probe(data)) {
|
|
if (memc_flexspi_is_running_xip(&data->controller)) {
|
|
/* We can't continue from here- the LUT stored in
|
|
* the FlexSPI will be invalid so we cannot XIP.
|
|
* Instead, spin here
|
|
*/
|
|
while (1) {
|
|
/* Spin */
|
|
}
|
|
}
|
|
LOG_ERR("SFDP probe failed");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Set the FlexSPI to full clock speed */
|
|
if (memc_flexspi_update_clock(&data->controller, &data->config,
|
|
data->port, data->config.flexspiRootClk)) {
|
|
LOG_ERR("Could not set flexspi clock speed");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
|
|
memc_flexspi_reset(&data->controller);
|
|
|
|
if (flash_flexspi_nor_read_id(dev, (uint8_t *)&vendor_id)) {
|
|
LOG_ERR("Could not read vendor id");
|
|
return -EIO;
|
|
}
|
|
LOG_DBG("Vendor id: 0x%0x", vendor_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct flash_driver_api flash_flexspi_nor_api = {
|
|
.erase = flash_flexspi_nor_erase,
|
|
.write = flash_flexspi_nor_write,
|
|
.read = flash_flexspi_nor_read,
|
|
.get_parameters = flash_flexspi_nor_get_parameters,
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
|
|
.page_layout = flash_flexspi_nor_pages_layout,
|
|
#endif
|
|
#if defined(CONFIG_FLASH_JESD216_API)
|
|
.sfdp_read = flash_flexspi_nor_sfdp_read,
|
|
.read_jedec_id = flash_flexspi_nor_read_id,
|
|
#endif
|
|
};
|
|
|
|
#define CONCAT3(x, y, z) x ## y ## z
|
|
|
|
#define CS_INTERVAL_UNIT(unit) \
|
|
CONCAT3(kFLEXSPI_CsIntervalUnit, unit, SckCycle)
|
|
|
|
#define AHB_WRITE_WAIT_UNIT(unit) \
|
|
CONCAT3(kFLEXSPI_AhbWriteWaitUnit, unit, AhbCycle)
|
|
|
|
#define FLASH_FLEXSPI_DEVICE_CONFIG(n) \
|
|
{ \
|
|
.flexspiRootClk = DT_INST_PROP(n, spi_max_frequency), \
|
|
.flashSize = DT_INST_PROP(n, size) / 8 / KB(1), \
|
|
.CSIntervalUnit = \
|
|
CS_INTERVAL_UNIT( \
|
|
DT_INST_PROP(n, cs_interval_unit)), \
|
|
.CSInterval = DT_INST_PROP(n, cs_interval), \
|
|
.CSHoldTime = DT_INST_PROP(n, cs_hold_time), \
|
|
.CSSetupTime = DT_INST_PROP(n, cs_setup_time), \
|
|
.dataValidTime = DT_INST_PROP(n, data_valid_time), \
|
|
.columnspace = DT_INST_PROP(n, column_space), \
|
|
.enableWordAddress = DT_INST_PROP(n, word_addressable), \
|
|
.AWRSeqIndex = 0, \
|
|
.AWRSeqNumber = 0, \
|
|
.ARDSeqIndex = READ, \
|
|
.ARDSeqNumber = 1, \
|
|
.AHBWriteWaitUnit = \
|
|
AHB_WRITE_WAIT_UNIT( \
|
|
DT_INST_PROP(n, ahb_write_wait_unit)), \
|
|
.AHBWriteWaitInterval = \
|
|
DT_INST_PROP(n, ahb_write_wait_interval), \
|
|
} \
|
|
|
|
#define FLASH_FLEXSPI_NOR(n) \
|
|
static const struct flash_flexspi_nor_config \
|
|
flash_flexspi_nor_config_##n = { \
|
|
.controller = DEVICE_DT_GET(DT_INST_BUS(n)), \
|
|
}; \
|
|
static struct flash_flexspi_nor_data \
|
|
flash_flexspi_nor_data_##n = { \
|
|
.config = FLASH_FLEXSPI_DEVICE_CONFIG(n), \
|
|
.port = DT_INST_REG_ADDR(n), \
|
|
.layout = { \
|
|
.pages_count = DT_INST_PROP(n, size) / 8 \
|
|
/ SPI_NOR_SECTOR_SIZE, \
|
|
.pages_size = SPI_NOR_SECTOR_SIZE, \
|
|
}, \
|
|
.flash_parameters = { \
|
|
.write_block_size = NOR_WRITE_SIZE, \
|
|
.erase_value = NOR_ERASE_VALUE, \
|
|
}, \
|
|
}; \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(n, \
|
|
flash_flexspi_nor_init, \
|
|
NULL, \
|
|
&flash_flexspi_nor_data_##n, \
|
|
&flash_flexspi_nor_config_##n, \
|
|
POST_KERNEL, \
|
|
CONFIG_FLASH_INIT_PRIORITY, \
|
|
&flash_flexspi_nor_api);
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(FLASH_FLEXSPI_NOR)
|