3b50237699
Use the correct dedicated macros for enabling DMA transfer for STM32H7 and U5. Signed-off-by: Guillaume Gautier <guillaume.gautier-ext@st.com>
1751 lines
52 KiB
C
1751 lines
52 KiB
C
/*
|
|
* Copyright (c) 2018 Kokoon Technology Limited
|
|
* Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com>
|
|
* Copyright (c) 2019 Endre Karlson
|
|
* Copyright (c) 2020 Teslabs Engineering S.L.
|
|
* Copyright (c) 2021 Marius Scholtz, RIC Electronics
|
|
* Copyright (c) 2023 Hein Wessels, Nobleo Technology
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT st_stm32_adc
|
|
|
|
#include <errno.h>
|
|
|
|
#include <zephyr/drivers/adc.h>
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/init.h>
|
|
#include <soc.h>
|
|
#include <zephyr/pm/device.h>
|
|
#include <zephyr/pm/policy.h>
|
|
#include <stm32_ll_adc.h>
|
|
#if defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
#include <stm32_ll_pwr.h>
|
|
#endif /* CONFIG_SOC_SERIES_STM32U5X */
|
|
|
|
#ifdef CONFIG_ADC_STM32_DMA
|
|
#include <zephyr/drivers/dma/dma_stm32.h>
|
|
#include <zephyr/drivers/dma.h>
|
|
#include <zephyr/toolchain.h>
|
|
#include <stm32_ll_dma.h>
|
|
#endif
|
|
|
|
#define ADC_CONTEXT_USES_KERNEL_TIMER
|
|
#define ADC_CONTEXT_ENABLE_ON_COMPLETE
|
|
#include "adc_context.h"
|
|
|
|
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(adc_stm32);
|
|
|
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
|
|
#include <zephyr/dt-bindings/adc/stm32_adc.h>
|
|
#include <zephyr/irq.h>
|
|
#include <zephyr/mem_mgmt/mem_attr.h>
|
|
|
|
#ifdef CONFIG_SOC_SERIES_STM32H7X
|
|
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_NOCACHE_MEMORY
|
|
#include <zephyr/linker/linker-defs.h>
|
|
#elif defined(CONFIG_CACHE_MANAGEMENT)
|
|
#include <zephyr/arch/cache.h>
|
|
#endif /* CONFIG_NOCACHE_MEMORY */
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F3X)
|
|
#if defined(ADC1_V2_5)
|
|
/* ADC1_V2_5 is the ADC version for STM32F37x */
|
|
#define STM32F3X_ADC_V2_5
|
|
#elif defined(ADC5_V1_1)
|
|
/* ADC5_V1_1 is the ADC version for other STM32F3x */
|
|
#define STM32F3X_ADC_V1_1
|
|
#endif
|
|
#endif
|
|
/*
|
|
* Other ADC versions:
|
|
* ADC_VER_V5_V90 -> STM32H72x/H73x
|
|
* ADC_VER_V5_X -> STM32H74x/H75x && U5
|
|
* ADC_VER_V5_3 -> STM32H7Ax/H7Bx
|
|
* compat st_stm32f1_adc -> STM32F1, F37x (ADC1_V2_5)
|
|
* compat st_stm32f4_adc -> STM32F2, F4, F7, L1
|
|
*/
|
|
|
|
#define ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(value) \
|
|
(DT_INST_FOREACH_STATUS_OKAY_VARGS(IS_EQ_PROP_OR, \
|
|
num_sampling_time_common_channels,\
|
|
0, value) 0)
|
|
|
|
#define ANY_ADC_SEQUENCER_TYPE_IS(value) \
|
|
(DT_INST_FOREACH_STATUS_OKAY_VARGS(IS_EQ_PROP_OR, \
|
|
st_adc_sequencer,\
|
|
0, value) 0)
|
|
|
|
#define IS_EQ_PROP_OR(inst, prop, default_value, compare_value) \
|
|
IS_EQ(DT_INST_PROP_OR(inst, prop, default_value), compare_value) ||
|
|
|
|
/* reference voltage for the ADC */
|
|
#define STM32_ADC_VREF_MV DT_INST_PROP(0, vref_mv)
|
|
|
|
#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
|
|
#define RANK(n) LL_ADC_REG_RANK_##n
|
|
static const uint32_t table_rank[] = {
|
|
RANK(1),
|
|
RANK(2),
|
|
RANK(3),
|
|
RANK(4),
|
|
RANK(5),
|
|
RANK(6),
|
|
RANK(7),
|
|
RANK(8),
|
|
RANK(9),
|
|
RANK(10),
|
|
RANK(11),
|
|
RANK(12),
|
|
RANK(13),
|
|
RANK(14),
|
|
RANK(15),
|
|
RANK(16),
|
|
#if defined(LL_ADC_REG_RANK_17)
|
|
RANK(17),
|
|
RANK(18),
|
|
RANK(19),
|
|
RANK(20),
|
|
RANK(21),
|
|
RANK(22),
|
|
RANK(23),
|
|
RANK(24),
|
|
RANK(25),
|
|
RANK(26),
|
|
RANK(27),
|
|
#if defined(LL_ADC_REG_RANK_28)
|
|
RANK(28),
|
|
#endif /* LL_ADC_REG_RANK_28 */
|
|
#endif /* LL_ADC_REG_RANK_17 */
|
|
};
|
|
|
|
#define SEQ_LEN(n) LL_ADC_REG_SEQ_SCAN_ENABLE_##n##RANKS
|
|
/* Length of this array signifies the maximum sequence length */
|
|
static const uint32_t table_seq_len[] = {
|
|
LL_ADC_REG_SEQ_SCAN_DISABLE,
|
|
SEQ_LEN(2),
|
|
SEQ_LEN(3),
|
|
SEQ_LEN(4),
|
|
SEQ_LEN(5),
|
|
SEQ_LEN(6),
|
|
SEQ_LEN(7),
|
|
SEQ_LEN(8),
|
|
SEQ_LEN(9),
|
|
SEQ_LEN(10),
|
|
SEQ_LEN(11),
|
|
SEQ_LEN(12),
|
|
SEQ_LEN(13),
|
|
SEQ_LEN(14),
|
|
SEQ_LEN(15),
|
|
SEQ_LEN(16),
|
|
#if defined(LL_ADC_REG_SEQ_SCAN_ENABLE_17RANKS)
|
|
SEQ_LEN(17),
|
|
SEQ_LEN(18),
|
|
SEQ_LEN(19),
|
|
SEQ_LEN(20),
|
|
SEQ_LEN(21),
|
|
SEQ_LEN(22),
|
|
SEQ_LEN(23),
|
|
SEQ_LEN(24),
|
|
SEQ_LEN(25),
|
|
SEQ_LEN(26),
|
|
SEQ_LEN(27),
|
|
#if defined(LL_ADC_REG_SEQ_SCAN_ENABLE_28RANKS)
|
|
SEQ_LEN(28),
|
|
#endif /* LL_ADC_REG_SEQ_SCAN_ENABLE_28RANKS */
|
|
#endif /* LL_ADC_REG_SEQ_SCAN_ENABLE_17RANKS */
|
|
};
|
|
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */
|
|
|
|
/* Number of different sampling time values */
|
|
#define STM32_NB_SAMPLING_TIME 8
|
|
|
|
#ifdef CONFIG_ADC_STM32_DMA
|
|
struct stream {
|
|
const struct device *dma_dev;
|
|
uint32_t channel;
|
|
struct dma_config dma_cfg;
|
|
struct dma_block_config dma_blk_cfg;
|
|
uint8_t priority;
|
|
bool src_addr_increment;
|
|
bool dst_addr_increment;
|
|
};
|
|
#endif /* CONFIG_ADC_STM32_DMA */
|
|
|
|
struct adc_stm32_data {
|
|
struct adc_context ctx;
|
|
const struct device *dev;
|
|
uint16_t *buffer;
|
|
uint16_t *repeat_buffer;
|
|
|
|
uint8_t resolution;
|
|
uint32_t channels;
|
|
uint8_t channel_count;
|
|
uint8_t samples_count;
|
|
int8_t acq_time_index[2];
|
|
|
|
#ifdef CONFIG_ADC_STM32_DMA
|
|
volatile int dma_error;
|
|
struct stream dma;
|
|
#endif
|
|
};
|
|
|
|
struct adc_stm32_cfg {
|
|
ADC_TypeDef *base;
|
|
void (*irq_cfg_func)(void);
|
|
const struct stm32_pclken *pclken;
|
|
size_t pclk_len;
|
|
uint32_t clk_prescaler;
|
|
const struct pinctrl_dev_config *pcfg;
|
|
const uint16_t sampling_time_table[STM32_NB_SAMPLING_TIME];
|
|
int8_t num_sampling_time_common_channels;
|
|
int8_t sequencer_type;
|
|
int8_t res_table_size;
|
|
const uint32_t res_table[];
|
|
};
|
|
|
|
#ifdef CONFIG_ADC_STM32_DMA
|
|
static void adc_stm32_enable_dma_support(ADC_TypeDef *adc)
|
|
{
|
|
/* Allow ADC to create DMA request and set to one-shot mode as implemented in HAL drivers */
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32H7X)
|
|
|
|
#if defined(ADC_VER_V5_V90)
|
|
if (adc == ADC3) {
|
|
LL_ADC_REG_SetDMATransferMode(adc, LL_ADC3_REG_DMA_TRANSFER_LIMITED);
|
|
} else {
|
|
LL_ADC_REG_SetDataTransferMode(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED);
|
|
}
|
|
#elif defined(ADC_VER_V5_X)
|
|
LL_ADC_REG_SetDataTransferMode(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED);
|
|
#else
|
|
#error "Unsupported ADC version"
|
|
#endif
|
|
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) /* defined(CONFIG_SOC_SERIES_STM32H7X) */
|
|
|
|
#error "The STM32F1 ADC + DMA is not yet supported"
|
|
|
|
#elif defined(CONFIG_SOC_SERIES_STM32U5X) /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
|
|
|
|
if (adc == ADC4) {
|
|
LL_ADC_REG_SetDMATransfer(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED_ADC4);
|
|
} else {
|
|
LL_ADC_REG_SetDataTransferMode(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED);
|
|
}
|
|
|
|
#else /* defined(CONFIG_SOC_SERIES_STM32U5X) */
|
|
|
|
/* Default mechanism for other MCUs */
|
|
LL_ADC_REG_SetDMATransfer(adc, LL_ADC_REG_DMA_TRANSFER_LIMITED);
|
|
|
|
#endif
|
|
}
|
|
|
|
static int adc_stm32_dma_start(const struct device *dev,
|
|
void *buffer, size_t channel_count)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
struct adc_stm32_data *data = dev->data;
|
|
struct dma_block_config *blk_cfg;
|
|
int ret;
|
|
|
|
struct stream *dma = &data->dma;
|
|
|
|
blk_cfg = &dma->dma_blk_cfg;
|
|
|
|
/* prepare the block */
|
|
blk_cfg->block_size = channel_count * sizeof(int16_t);
|
|
|
|
/* Source and destination */
|
|
blk_cfg->source_address = (uint32_t)LL_ADC_DMA_GetRegAddr(adc, LL_ADC_DMA_REG_REGULAR_DATA);
|
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
blk_cfg->source_reload_en = 0;
|
|
|
|
blk_cfg->dest_address = (uint32_t)buffer;
|
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
blk_cfg->dest_reload_en = 0;
|
|
|
|
/* Manually set the FIFO threshold to 1/4 because the
|
|
* dmamux DTS entry does not contain fifo threshold
|
|
*/
|
|
blk_cfg->fifo_mode_control = 0;
|
|
|
|
/* direction is given by the DT */
|
|
dma->dma_cfg.head_block = blk_cfg;
|
|
dma->dma_cfg.user_data = data;
|
|
|
|
ret = dma_config(data->dma.dma_dev, data->dma.channel,
|
|
&dma->dma_cfg);
|
|
if (ret != 0) {
|
|
LOG_ERR("Problem setting up DMA: %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
adc_stm32_enable_dma_support(adc);
|
|
|
|
data->dma_error = 0;
|
|
ret = dma_start(data->dma.dma_dev, data->dma.channel);
|
|
if (ret != 0) {
|
|
LOG_ERR("Problem starting DMA: %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
LOG_DBG("DMA started");
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_ADC_STM32_DMA */
|
|
|
|
#if defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X)
|
|
/* Returns true if given buffer is in a non-cacheable SRAM region.
|
|
* This is determined using the device tree, meaning the .nocache region won't work.
|
|
* The entire buffer must be in a single region.
|
|
* An example of how the SRAM region can be defined in the DTS:
|
|
* &sram4 {
|
|
* zephyr,memory-attr = <( DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE) | ... )>;
|
|
* };
|
|
*/
|
|
static bool buf_in_nocache(uintptr_t buf, size_t len_bytes)
|
|
{
|
|
bool buf_within_nocache = false;
|
|
|
|
#ifdef CONFIG_NOCACHE_MEMORY
|
|
buf_within_nocache = (buf >= ((uintptr_t)_nocache_ram_start)) &&
|
|
((buf + len_bytes - 1) <= ((uintptr_t)_nocache_ram_end));
|
|
if (buf_within_nocache) {
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_NOCACHE_MEMORY */
|
|
|
|
buf_within_nocache = mem_attr_check_buf(
|
|
(void *)buf, len_bytes, DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE)) == 0;
|
|
|
|
return buf_within_nocache;
|
|
}
|
|
#endif /* defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X) */
|
|
|
|
static int check_buffer(const struct adc_sequence *sequence,
|
|
uint8_t active_channels)
|
|
{
|
|
size_t needed_buffer_size;
|
|
|
|
needed_buffer_size = active_channels * sizeof(uint16_t);
|
|
|
|
if (sequence->options) {
|
|
needed_buffer_size *= (1 + sequence->options->extra_samplings);
|
|
}
|
|
|
|
if (sequence->buffer_size < needed_buffer_size) {
|
|
LOG_ERR("Provided buffer is too small (%u/%u)",
|
|
sequence->buffer_size, needed_buffer_size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#if defined(CONFIG_ADC_STM32_DMA) && defined(CONFIG_SOC_SERIES_STM32H7X)
|
|
/* Buffer is forced to be in non-cacheable SRAM region to avoid cache maintenance */
|
|
if (!buf_in_nocache((uintptr_t)sequence->buffer, needed_buffer_size)) {
|
|
LOG_ERR("Supplied buffer is not in a non-cacheable region according to DTS.");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enable ADC peripheral, and wait until ready if required by SOC.
|
|
*/
|
|
static int adc_stm32_enable(ADC_TypeDef *adc)
|
|
{
|
|
if (LL_ADC_IsEnabled(adc) == 1UL) {
|
|
return 0;
|
|
}
|
|
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
LL_ADC_ClearFlag_ADRDY(adc);
|
|
LL_ADC_Enable(adc);
|
|
|
|
/*
|
|
* Enabling ADC modules in many series may fail if they are
|
|
* still not stabilized, this will wait for a short time (about 1ms)
|
|
* to ensure ADC modules are properly enabled.
|
|
*/
|
|
uint32_t count_timeout = 0;
|
|
|
|
while (LL_ADC_IsActiveFlag_ADRDY(adc) == 0) {
|
|
#ifdef CONFIG_SOC_SERIES_STM32F0X
|
|
/* For F0, continue to write ADEN=1 until ADRDY=1 */
|
|
if (LL_ADC_IsEnabled(adc) == 0UL) {
|
|
LL_ADC_Enable(adc);
|
|
}
|
|
#endif /* CONFIG_SOC_SERIES_STM32F0X */
|
|
count_timeout++;
|
|
k_busy_wait(100);
|
|
if (count_timeout >= 10) {
|
|
return -ETIMEDOUT;
|
|
}
|
|
}
|
|
#else
|
|
/*
|
|
* On STM32F1, F2, F37x, F4, F7 and L1, do not re-enable the ADC.
|
|
* On F1 and F37x if ADON holds 1 (LL_ADC_IsEnabled is true) and 1 is
|
|
* written, then conversion starts. That's not what is expected.
|
|
*/
|
|
LL_ADC_Enable(adc);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void adc_stm32_start_conversion(const struct device *dev)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
|
|
LOG_DBG("Starting conversion");
|
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F1X) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
LL_ADC_REG_StartConversion(adc);
|
|
#else
|
|
LL_ADC_REG_StartConversionSWStart(adc);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Disable ADC peripheral, and wait until it is disabled
|
|
*/
|
|
static void adc_stm32_disable(ADC_TypeDef *adc)
|
|
{
|
|
if (LL_ADC_IsEnabled(adc) != 1UL) {
|
|
return;
|
|
}
|
|
|
|
/* Stop ongoing conversion if any
|
|
* Software must poll ADSTART (or JADSTART) until the bit is reset before assuming
|
|
* the ADC is completely stopped.
|
|
*/
|
|
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
if (LL_ADC_REG_IsConversionOngoing(adc)) {
|
|
LL_ADC_REG_StopConversion(adc);
|
|
while (LL_ADC_REG_IsConversionOngoing(adc)) {
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32C0X) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32F0X) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32G0X) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32L0X) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32WBAX) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32WLX)
|
|
if (LL_ADC_INJ_IsConversionOngoing(adc)) {
|
|
LL_ADC_INJ_StopConversion(adc);
|
|
while (LL_ADC_INJ_IsConversionOngoing(adc)) {
|
|
}
|
|
}
|
|
#endif
|
|
|
|
LL_ADC_Disable(adc);
|
|
|
|
/* Wait ADC is fully disabled so that we don't leave the driver into intermediate state
|
|
* which could prevent enabling the peripheral
|
|
*/
|
|
while (LL_ADC_IsEnabled(adc) == 1UL) {
|
|
}
|
|
}
|
|
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
|
|
#define HAS_CALIBRATION
|
|
|
|
/* Number of ADC clock cycles to wait before of after starting calibration */
|
|
#if defined(LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES)
|
|
#define ADC_DELAY_CALIB_ADC_CYCLES LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES
|
|
#elif defined(LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES)
|
|
#define ADC_DELAY_CALIB_ADC_CYCLES LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES
|
|
#elif defined(LL_ADC_DELAY_DISABLE_CALIB_ADC_CYCLES)
|
|
#define ADC_DELAY_CALIB_ADC_CYCLES LL_ADC_DELAY_DISABLE_CALIB_ADC_CYCLES
|
|
#endif
|
|
|
|
static void adc_stm32_calibration_delay(const struct device *dev)
|
|
{
|
|
/*
|
|
* Calibration of F1 and F3 (ADC1_V2_5) must start two cycles after ADON
|
|
* is set.
|
|
* Other ADC modules have to wait for some cycles after calibration to
|
|
* be enabled.
|
|
*/
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
uint32_t adc_rate, wait_cycles;
|
|
|
|
if (clock_control_get_rate(clk,
|
|
(clock_control_subsys_t) &config->pclken[0], &adc_rate) < 0) {
|
|
LOG_ERR("ADC clock rate get error.");
|
|
}
|
|
|
|
if (adc_rate == 0) {
|
|
LOG_ERR("ADC Clock rate null");
|
|
return;
|
|
}
|
|
wait_cycles = SystemCoreClock / adc_rate *
|
|
ADC_DELAY_CALIB_ADC_CYCLES;
|
|
|
|
for (int i = wait_cycles; i >= 0; i--) {
|
|
}
|
|
}
|
|
|
|
static void adc_stm32_calibration_start(const struct device *dev)
|
|
{
|
|
const struct adc_stm32_cfg *config =
|
|
(const struct adc_stm32_cfg *)dev->config;
|
|
ADC_TypeDef *adc = config->base;
|
|
|
|
#if defined(STM32F3X_ADC_V1_1) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L5X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32H5X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WBX) || \
|
|
defined(CONFIG_SOC_SERIES_STM32G4X)
|
|
LL_ADC_StartCalibration(adc, LL_ADC_SINGLE_ENDED);
|
|
#elif defined(CONFIG_SOC_SERIES_STM32C0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F0X) || \
|
|
DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) || \
|
|
defined(CONFIG_SOC_SERIES_STM32G0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WLX) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WBAX)
|
|
LL_ADC_StartCalibration(adc);
|
|
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET);
|
|
#elif defined(CONFIG_SOC_SERIES_STM32H7X)
|
|
LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET, LL_ADC_SINGLE_ENDED);
|
|
#endif
|
|
/* Make sure ADCAL is cleared before returning for proper operations
|
|
* on the ADC control register, for enabling the peripheral for example
|
|
*/
|
|
while (LL_ADC_IsCalibrationOnGoing(adc)) {
|
|
}
|
|
}
|
|
|
|
static int adc_stm32_calibrate(const struct device *dev)
|
|
{
|
|
const struct adc_stm32_cfg *config =
|
|
(const struct adc_stm32_cfg *)dev->config;
|
|
ADC_TypeDef *adc = config->base;
|
|
int err;
|
|
|
|
#if defined(CONFIG_ADC_STM32_DMA)
|
|
#if defined(CONFIG_SOC_SERIES_STM32C0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32G0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WBAX) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WLX)
|
|
/* Make sure DMA is disabled before starting calibration */
|
|
LL_ADC_REG_SetDMATransfer(adc, LL_ADC_REG_DMA_TRANSFER_NONE);
|
|
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
if (adc == ADC4) {
|
|
/* Make sure DMA is disabled before starting calibration */
|
|
LL_ADC_REG_SetDMATransfer(adc, LL_ADC_REG_DMA_TRANSFER_NONE);
|
|
}
|
|
#endif /* CONFIG_SOC_SERIES_* */
|
|
#endif /* CONFIG_ADC_STM32_DMA */
|
|
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
adc_stm32_disable(adc);
|
|
adc_stm32_calibration_start(dev);
|
|
adc_stm32_calibration_delay(dev);
|
|
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
|
|
|
|
err = adc_stm32_enable(adc);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
adc_stm32_calibration_delay(dev);
|
|
adc_stm32_calibration_start(dev);
|
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32H7X) && \
|
|
defined(CONFIG_CPU_CORTEX_M7)
|
|
/*
|
|
* To ensure linearity the factory calibration values
|
|
* should be loaded on initialization.
|
|
*/
|
|
uint32_t channel_offset = 0U;
|
|
uint32_t linear_calib_buffer = 0U;
|
|
|
|
if (adc == ADC1) {
|
|
channel_offset = 0UL;
|
|
} else if (adc == ADC2) {
|
|
channel_offset = 8UL;
|
|
} else /*Case ADC3*/ {
|
|
channel_offset = 16UL;
|
|
}
|
|
/* Read factory calibration factors */
|
|
for (uint32_t count = 0UL; count < ADC_LINEAR_CALIB_REG_COUNT; count++) {
|
|
linear_calib_buffer = *(uint32_t *)(
|
|
ADC_LINEAR_CALIB_REG_1_ADDR + channel_offset + count
|
|
);
|
|
LL_ADC_SetCalibrationLinearFactor(
|
|
adc, LL_ADC_CALIB_LINEARITY_WORD1 << count,
|
|
linear_calib_buffer
|
|
);
|
|
}
|
|
#endif /* CONFIG_SOC_SERIES_STM32H7X */
|
|
|
|
return 0;
|
|
}
|
|
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc) */
|
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32F1X) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32F3X) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
|
|
#define HAS_OVERSAMPLING
|
|
|
|
#define OVS_SHIFT(n) LL_ADC_OVS_SHIFT_RIGHT_##n
|
|
static const uint32_t table_oversampling_shift[] = {
|
|
LL_ADC_OVS_SHIFT_NONE,
|
|
OVS_SHIFT(1),
|
|
OVS_SHIFT(2),
|
|
OVS_SHIFT(3),
|
|
OVS_SHIFT(4),
|
|
OVS_SHIFT(5),
|
|
OVS_SHIFT(6),
|
|
OVS_SHIFT(7),
|
|
OVS_SHIFT(8),
|
|
#if defined(CONFIG_SOC_SERIES_STM32H7X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
OVS_SHIFT(9),
|
|
OVS_SHIFT(10),
|
|
#endif
|
|
};
|
|
|
|
#ifdef LL_ADC_OVS_RATIO_2
|
|
#define OVS_RATIO(n) LL_ADC_OVS_RATIO_##n
|
|
static const uint32_t table_oversampling_ratio[] = {
|
|
0,
|
|
OVS_RATIO(2),
|
|
OVS_RATIO(4),
|
|
OVS_RATIO(8),
|
|
OVS_RATIO(16),
|
|
OVS_RATIO(32),
|
|
OVS_RATIO(64),
|
|
OVS_RATIO(128),
|
|
OVS_RATIO(256),
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Function to configure the oversampling scope. It is basically a wrapper over
|
|
* LL_ADC_SetOverSamplingScope() which in addition stops the ADC if needed.
|
|
*/
|
|
static void adc_stm32_oversampling_scope(ADC_TypeDef *adc, uint32_t ovs_scope)
|
|
{
|
|
#if defined(CONFIG_SOC_SERIES_STM32G0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WLX)
|
|
/*
|
|
* Setting OVS bits is conditioned to ADC state: ADC must be disabled
|
|
* or enabled without conversion on going : disable it, it will stop.
|
|
* For the G0 series, ADC must be disabled to prevent CKMODE bitfield
|
|
* from getting reset, see errata ES0418 section 2.6.4.
|
|
*/
|
|
if (LL_ADC_GetOverSamplingScope(adc) == ovs_scope) {
|
|
return;
|
|
}
|
|
adc_stm32_disable(adc);
|
|
#endif
|
|
LL_ADC_SetOverSamplingScope(adc, ovs_scope);
|
|
}
|
|
|
|
/*
|
|
* Function to configure the oversampling ratio and shift. It is basically a
|
|
* wrapper over LL_ADC_SetOverSamplingRatioShift() which in addition stops the
|
|
* ADC if needed.
|
|
*/
|
|
static void adc_stm32_oversampling_ratioshift(ADC_TypeDef *adc, uint32_t ratio, uint32_t shift)
|
|
{
|
|
/*
|
|
* setting OVS bits is conditioned to ADC state: ADC must be disabled
|
|
* or enabled without conversion on going : disable it, it will stop
|
|
*/
|
|
if ((LL_ADC_GetOverSamplingRatio(adc) == ratio)
|
|
&& (LL_ADC_GetOverSamplingShift(adc) == shift)) {
|
|
return;
|
|
}
|
|
adc_stm32_disable(adc);
|
|
|
|
LL_ADC_ConfigOverSamplingRatioShift(adc, ratio, shift);
|
|
}
|
|
|
|
/*
|
|
* Function to configure the oversampling ratio and shift using stm32 LL
|
|
* ratio is directly the sequence->oversampling (a 2^n value)
|
|
* shift is the corresponding LL_ADC_OVS_SHIFT_RIGHT_x constant
|
|
*/
|
|
static int adc_stm32_oversampling(ADC_TypeDef *adc, uint8_t ratio)
|
|
{
|
|
if (ratio == 0) {
|
|
adc_stm32_oversampling_scope(adc, LL_ADC_OVS_DISABLE);
|
|
return 0;
|
|
} else if (ratio < ARRAY_SIZE(table_oversampling_shift)) {
|
|
adc_stm32_oversampling_scope(adc, LL_ADC_OVS_GRP_REGULAR_CONTINUED);
|
|
} else {
|
|
LOG_ERR("Invalid oversampling");
|
|
return -EINVAL;
|
|
}
|
|
|
|
uint32_t shift = table_oversampling_shift[ratio];
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32H7X)
|
|
/* Certain variants of the H7, such as STM32H72x/H73x has ADC3
|
|
* as a separate entity and require special handling.
|
|
*/
|
|
#if defined(ADC_VER_V5_V90)
|
|
if (adc != ADC3) {
|
|
/* the LL function expects a value from 1 to 1024 */
|
|
adc_stm32_oversampling_ratioshift(adc, 1 << ratio, shift);
|
|
} else {
|
|
/* the LL function expects a value LL_ADC_OVS_RATIO_x */
|
|
adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
|
|
}
|
|
#else
|
|
/* the LL function expects a value from 1 to 1024 */
|
|
adc_stm32_oversampling_ratioshift(adc, 1 << ratio, shift);
|
|
#endif /* defined(ADC_VER_V5_V90) */
|
|
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
if (adc != ADC4) {
|
|
/* the LL function expects a value from 1 to 1024 */
|
|
adc_stm32_oversampling_ratioshift(adc, (1 << ratio), shift);
|
|
} else {
|
|
/* the LL function expects a value LL_ADC_OVS_RATIO_x */
|
|
adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
|
|
}
|
|
#else /* CONFIG_SOC_SERIES_STM32H7X */
|
|
adc_stm32_oversampling_ratioshift(adc, table_oversampling_ratio[ratio], shift);
|
|
#endif /* CONFIG_SOC_SERIES_STM32H7X */
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SOC_SERIES_STM32xxx */
|
|
|
|
#ifdef CONFIG_ADC_STM32_DMA
|
|
static void dma_callback(const struct device *dev, void *user_data,
|
|
uint32_t channel, int status)
|
|
{
|
|
/* user_data directly holds the adc device */
|
|
struct adc_stm32_data *data = user_data;
|
|
const struct adc_stm32_cfg *config = data->dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
|
|
LOG_DBG("dma callback");
|
|
|
|
if (channel == data->dma.channel) {
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
if (LL_ADC_IsActiveFlag_OVR(adc) || (status >= 0)) {
|
|
#else
|
|
if (status >= 0) {
|
|
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
|
|
data->samples_count = data->channel_count;
|
|
data->buffer += data->channel_count;
|
|
/* Stop the DMA engine, only to start it again when the callback returns
|
|
* ADC_ACTION_REPEAT or ADC_ACTION_CONTINUE, or the number of samples
|
|
* haven't been reached Starting the DMA engine is done
|
|
* within adc_context_start_sampling
|
|
*/
|
|
dma_stop(data->dma.dma_dev, data->dma.channel);
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
LL_ADC_ClearFlag_OVR(adc);
|
|
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
|
|
/* No need to invalidate the cache because it's assumed that
|
|
* the address is in a non-cacheable SRAM region.
|
|
*/
|
|
adc_context_on_sampling_done(&data->ctx, dev);
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE,
|
|
PM_ALL_SUBSTATES);
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM,
|
|
PM_ALL_SUBSTATES);
|
|
}
|
|
} else if (status < 0) {
|
|
LOG_ERR("DMA sampling complete, but DMA reported error %d", status);
|
|
data->dma_error = status;
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
LL_ADC_REG_StopConversion(adc);
|
|
#endif
|
|
dma_stop(data->dma.dma_dev, data->dma.channel);
|
|
adc_context_complete(&data->ctx, status);
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_ADC_STM32_DMA */
|
|
|
|
static uint8_t get_reg_value(const struct device *dev, uint32_t reg,
|
|
uint32_t shift, uint32_t mask)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
|
|
uintptr_t addr = (uintptr_t)adc + reg;
|
|
|
|
return ((*(volatile uint32_t *)addr >> shift) & mask);
|
|
}
|
|
|
|
static void set_reg_value(const struct device *dev, uint32_t reg,
|
|
uint32_t shift, uint32_t mask, uint32_t value)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
|
|
uintptr_t addr = (uintptr_t)adc + reg;
|
|
|
|
MODIFY_REG(*(volatile uint32_t *)addr, (mask << shift), (value << shift));
|
|
}
|
|
|
|
static int set_resolution(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
uint8_t res_reg_addr = 0xFF;
|
|
uint8_t res_shift = 0;
|
|
uint8_t res_mask = 0;
|
|
uint8_t res_reg_val = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < config->res_table_size; i++) {
|
|
if (sequence->resolution == STM32_ADC_GET_REAL_VAL(config->res_table[i])) {
|
|
res_reg_addr = STM32_ADC_GET_REG(config->res_table[i]);
|
|
res_shift = STM32_ADC_GET_SHIFT(config->res_table[i]);
|
|
res_mask = STM32_ADC_GET_MASK(config->res_table[i]);
|
|
res_reg_val = STM32_ADC_GET_REG_VAL(config->res_table[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == config->res_table_size) {
|
|
LOG_ERR("Invalid resolution");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Some MCUs (like STM32F1x) have no register to configure resolution.
|
|
* These MCUs have a register address value of 0xFF and should be
|
|
* ignored.
|
|
*/
|
|
if (res_reg_addr != 0xFF) {
|
|
/*
|
|
* We don't use LL_ADC_SetResolution and LL_ADC_GetResolution
|
|
* because they don't strictly use hardware resolution values
|
|
* and makes internal conversions for some series.
|
|
* (see stm32h7xx_ll_adc.h)
|
|
* Instead we set the register ourselves if needed.
|
|
*/
|
|
if (get_reg_value(dev, res_reg_addr, res_shift, res_mask) != res_reg_val) {
|
|
/*
|
|
* Writing ADC_CFGR1 register while ADEN bit is set
|
|
* resets RES[1:0] bitfield. We need to disable and enable adc.
|
|
*/
|
|
adc_stm32_disable(adc);
|
|
set_reg_value(dev, res_reg_addr, res_shift, res_mask, res_reg_val);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_sequencer(const struct device *dev)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
struct adc_stm32_data *data = dev->data;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
|
|
uint8_t channel_id;
|
|
uint8_t channel_index = 0;
|
|
uint32_t channels_mask = 0;
|
|
|
|
/* Iterate over selected channels in bitmask keeping track of:
|
|
* - channel_index: ranging from 0 -> ( data->channel_count - 1 )
|
|
* - channel_id: ordinal position of channel in data->channels bitmask
|
|
*/
|
|
for (uint32_t channels = data->channels; channels;
|
|
channels &= ~BIT(channel_id), channel_index++) {
|
|
channel_id = find_lsb_set(channels) - 1;
|
|
|
|
uint32_t channel = __LL_ADC_DECIMAL_NB_TO_CHANNEL(channel_id);
|
|
|
|
channels_mask |= channel;
|
|
|
|
#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
|
|
if (config->sequencer_type == FULLY_CONFIGURABLE) {
|
|
#if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
/*
|
|
* Each channel in the sequence must be previously enabled in PCSEL.
|
|
* This register controls the analog switch integrated in the IO level.
|
|
*/
|
|
LL_ADC_SetChannelPreselection(adc, channel);
|
|
#endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32U5X */
|
|
LL_ADC_REG_SetSequencerRanks(adc, table_rank[channel_index], channel);
|
|
LL_ADC_REG_SetSequencerLength(adc, table_seq_len[channel_index]);
|
|
}
|
|
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */
|
|
}
|
|
|
|
#if ANY_ADC_SEQUENCER_TYPE_IS(NOT_FULLY_CONFIGURABLE)
|
|
if (config->sequencer_type == NOT_FULLY_CONFIGURABLE) {
|
|
LL_ADC_REG_SetSequencerChannels(adc, channels_mask);
|
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32L0X) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32U5X) && \
|
|
!defined(CONFIG_SOC_SERIES_STM32WBAX)
|
|
/*
|
|
* After modifying sequencer it is mandatory to wait for the
|
|
* assertion of CCRDY flag
|
|
*/
|
|
while (LL_ADC_IsActiveFlag_CCRDY(adc) == 0) {
|
|
}
|
|
LL_ADC_ClearFlag_CCRDY(adc);
|
|
#endif /* !CONFIG_SOC_SERIES_STM32F0X && !L0X && !U5X && !WBAX */
|
|
}
|
|
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(NOT_FULLY_CONFIGURABLE) */
|
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) || \
|
|
DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
LL_ADC_SetSequencersScanMode(adc, LL_ADC_SEQ_SCAN_ENABLE);
|
|
#endif /* st_stm32f1_adc || st_stm32f4_adc */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int start_read(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
struct adc_stm32_data *data = dev->data;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
int err;
|
|
|
|
data->buffer = sequence->buffer;
|
|
data->channels = sequence->channels;
|
|
data->channel_count = POPCOUNT(data->channels);
|
|
data->samples_count = 0;
|
|
|
|
if (data->channel_count == 0) {
|
|
LOG_ERR("No channels selected");
|
|
return -EINVAL;
|
|
}
|
|
|
|
#if ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE)
|
|
if (data->channel_count > ARRAY_SIZE(table_seq_len)) {
|
|
LOG_ERR("Too many channels for sequencer. Max: %d", ARRAY_SIZE(table_seq_len));
|
|
return -EINVAL;
|
|
}
|
|
#endif /* ANY_ADC_SEQUENCER_TYPE_IS(FULLY_CONFIGURABLE) */
|
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && !defined(CONFIG_ADC_STM32_DMA)
|
|
/* Multiple samplings is only supported with DMA for F1 */
|
|
if (data->channel_count > 1) {
|
|
LOG_ERR("Without DMA, this device only supports single channel sampling");
|
|
return -EINVAL;
|
|
}
|
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && !CONFIG_ADC_STM32_DMA */
|
|
|
|
/* Check and set the resolution */
|
|
err = set_resolution(dev, sequence);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
/* Configure the sequencer */
|
|
err = set_sequencer(dev);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
err = check_buffer(sequence, data->channel_count);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
#ifdef HAS_OVERSAMPLING
|
|
err = adc_stm32_oversampling(adc, sequence->oversampling);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
#else
|
|
if (sequence->oversampling) {
|
|
LOG_ERR("Oversampling not supported");
|
|
return -ENOTSUP;
|
|
}
|
|
#endif /* HAS_OVERSAMPLING */
|
|
|
|
if (sequence->calibrate) {
|
|
#if defined(HAS_CALIBRATION)
|
|
adc_stm32_calibrate(dev);
|
|
#else
|
|
LOG_ERR("Calibration not supported");
|
|
return -ENOTSUP;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Make sure the ADC is enabled as it might have been disabled earlier
|
|
* to set the resolution, to set the oversampling or to perform the
|
|
* calibration.
|
|
*/
|
|
adc_stm32_enable(adc);
|
|
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
LL_ADC_ClearFlag_OVR(adc);
|
|
#endif /* !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) */
|
|
|
|
#if !defined(CONFIG_ADC_STM32_DMA)
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
/* Trigger an ISR after each sampling (not just end of sequence) */
|
|
LL_ADC_REG_SetFlagEndOfConversion(adc, LL_ADC_REG_FLAG_EOC_UNITARY_CONV);
|
|
LL_ADC_EnableIT_EOCS(adc);
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
LL_ADC_EnableIT_EOS(adc);
|
|
#else
|
|
LL_ADC_EnableIT_EOC(adc);
|
|
#endif
|
|
#endif /* CONFIG_ADC_STM32_DMA */
|
|
|
|
/* This call will start the DMA */
|
|
adc_context_start_read(&data->ctx, sequence);
|
|
|
|
int result = adc_context_wait_for_completion(&data->ctx);
|
|
|
|
#ifdef CONFIG_ADC_STM32_DMA
|
|
/* check if there's anything wrong with dma start */
|
|
result = (data->dma_error ? data->dma_error : result);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
static void adc_context_start_sampling(struct adc_context *ctx)
|
|
{
|
|
struct adc_stm32_data *data =
|
|
CONTAINER_OF(ctx, struct adc_stm32_data, ctx);
|
|
const struct device *dev = data->dev;
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
|
|
/* Remove warning for some series */
|
|
ARG_UNUSED(adc);
|
|
|
|
data->repeat_buffer = data->buffer;
|
|
|
|
#ifdef CONFIG_ADC_STM32_DMA
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
/* Make sure DMA bit of ADC register CR2 is set to 0 before starting a DMA transfer */
|
|
LL_ADC_REG_SetDMATransfer(adc, LL_ADC_REG_DMA_TRANSFER_NONE);
|
|
#endif
|
|
adc_stm32_dma_start(dev, data->buffer, data->channel_count);
|
|
#endif
|
|
adc_stm32_start_conversion(dev);
|
|
}
|
|
|
|
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
|
|
bool repeat_sampling)
|
|
{
|
|
struct adc_stm32_data *data =
|
|
CONTAINER_OF(ctx, struct adc_stm32_data, ctx);
|
|
|
|
if (repeat_sampling) {
|
|
data->buffer = data->repeat_buffer;
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_ADC_STM32_DMA
|
|
static void adc_stm32_isr(const struct device *dev)
|
|
{
|
|
struct adc_stm32_data *data = dev->data;
|
|
const struct adc_stm32_cfg *config =
|
|
(const struct adc_stm32_cfg *)dev->config;
|
|
ADC_TypeDef *adc = config->base;
|
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
if (LL_ADC_IsActiveFlag_EOS(adc) == 1) {
|
|
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
if (LL_ADC_IsActiveFlag_EOCS(adc) == 1) {
|
|
#else
|
|
if (LL_ADC_IsActiveFlag_EOC(adc) == 1) {
|
|
#endif
|
|
*data->buffer++ = LL_ADC_REG_ReadConversionData32(adc);
|
|
/* ISR is triggered after each conversion, and at the end-of-sequence. */
|
|
if (++data->samples_count == data->channel_count) {
|
|
data->samples_count = 0;
|
|
adc_context_on_sampling_done(&data->ctx, dev);
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE,
|
|
PM_ALL_SUBSTATES);
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM,
|
|
PM_ALL_SUBSTATES);
|
|
}
|
|
}
|
|
}
|
|
|
|
LOG_DBG("%s ISR triggered.", dev->name);
|
|
}
|
|
#endif /* !CONFIG_ADC_STM32_DMA */
|
|
|
|
static void adc_context_on_complete(struct adc_context *ctx, int status)
|
|
{
|
|
struct adc_stm32_data *data =
|
|
CONTAINER_OF(ctx, struct adc_stm32_data, ctx);
|
|
const struct adc_stm32_cfg *config = data->dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
|
|
ARG_UNUSED(status);
|
|
|
|
/* Reset acquisition time used for the sequence */
|
|
data->acq_time_index[0] = -1;
|
|
data->acq_time_index[1] = -1;
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
/* Reset channel preselection register */
|
|
LL_ADC_SetChannelPreselection(adc, 0);
|
|
#else
|
|
ARG_UNUSED(adc);
|
|
#endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32U5X */
|
|
}
|
|
|
|
static int adc_stm32_read(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
struct adc_stm32_data *data = dev->data;
|
|
int error;
|
|
|
|
adc_context_lock(&data->ctx, false, NULL);
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
|
|
}
|
|
error = start_read(dev, sequence);
|
|
adc_context_release(&data->ctx, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
static int adc_stm32_read_async(const struct device *dev,
|
|
const struct adc_sequence *sequence,
|
|
struct k_poll_signal *async)
|
|
{
|
|
struct adc_stm32_data *data = dev->data;
|
|
int error;
|
|
|
|
adc_context_lock(&data->ctx, true, async);
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
|
|
}
|
|
error = start_read(dev, sequence);
|
|
adc_context_release(&data->ctx, error);
|
|
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
static int adc_stm32_sampling_time_check(const struct device *dev, uint16_t acq_time)
|
|
{
|
|
const struct adc_stm32_cfg *config =
|
|
(const struct adc_stm32_cfg *)dev->config;
|
|
|
|
if (acq_time == ADC_ACQ_TIME_DEFAULT) {
|
|
return 0;
|
|
}
|
|
|
|
if (acq_time == ADC_ACQ_TIME_MAX) {
|
|
return STM32_NB_SAMPLING_TIME - 1;
|
|
}
|
|
|
|
for (int i = 0; i < STM32_NB_SAMPLING_TIME; i++) {
|
|
if (acq_time == ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS,
|
|
config->sampling_time_table[i])) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
LOG_ERR("Sampling time value not supported.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int adc_stm32_sampling_time_setup(const struct device *dev, uint8_t id,
|
|
uint16_t acq_time)
|
|
{
|
|
const struct adc_stm32_cfg *config =
|
|
(const struct adc_stm32_cfg *)dev->config;
|
|
ADC_TypeDef *adc = config->base;
|
|
struct adc_stm32_data *data = dev->data;
|
|
|
|
int acq_time_index;
|
|
|
|
acq_time_index = adc_stm32_sampling_time_check(dev, acq_time);
|
|
if (acq_time_index < 0) {
|
|
return acq_time_index;
|
|
}
|
|
|
|
/*
|
|
* For all series we use the fact that the macros LL_ADC_SAMPLINGTIME_*
|
|
* that should be passed to the set functions are all coded on 3 bits
|
|
* with 0 shift (ie 0 to 7). So acq_time_index is equivalent to the
|
|
* macro we would use for the desired sampling time.
|
|
*/
|
|
switch (config->num_sampling_time_common_channels) {
|
|
case 0:
|
|
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(0)
|
|
ARG_UNUSED(data);
|
|
LL_ADC_SetChannelSamplingTime(adc,
|
|
__LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
|
|
(uint32_t)acq_time_index);
|
|
#endif
|
|
break;
|
|
case 1:
|
|
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(1)
|
|
/* Only one sampling time can be selected for all channels.
|
|
* The first one we find is used, all others must match.
|
|
*/
|
|
if ((data->acq_time_index[0] == -1) ||
|
|
(acq_time_index == data->acq_time_index[0])) {
|
|
/* Reg is empty or value matches */
|
|
data->acq_time_index[0] = acq_time_index;
|
|
LL_ADC_SetSamplingTimeCommonChannels(adc,
|
|
(uint32_t)acq_time_index);
|
|
} else {
|
|
/* Reg is used and value does not match */
|
|
LOG_ERR("Multiple sampling times not supported");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
break;
|
|
case 2:
|
|
#if ANY_NUM_COMMON_SAMPLING_TIME_CHANNELS_IS(2)
|
|
/* Two different sampling times can be selected for all channels.
|
|
* The first two we find are used, all others must match either one.
|
|
*/
|
|
if ((data->acq_time_index[0] == -1) ||
|
|
(acq_time_index == data->acq_time_index[0])) {
|
|
/* 1st reg is empty or value matches 1st reg */
|
|
data->acq_time_index[0] = acq_time_index;
|
|
LL_ADC_SetChannelSamplingTime(adc,
|
|
__LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
|
|
LL_ADC_SAMPLINGTIME_COMMON_1);
|
|
LL_ADC_SetSamplingTimeCommonChannels(adc,
|
|
LL_ADC_SAMPLINGTIME_COMMON_1,
|
|
(uint32_t)acq_time_index);
|
|
} else if ((data->acq_time_index[1] == -1) ||
|
|
(acq_time_index == data->acq_time_index[1])) {
|
|
/* 2nd reg is empty or value matches 2nd reg */
|
|
data->acq_time_index[1] = acq_time_index;
|
|
LL_ADC_SetChannelSamplingTime(adc,
|
|
__LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
|
|
LL_ADC_SAMPLINGTIME_COMMON_2);
|
|
LL_ADC_SetSamplingTimeCommonChannels(adc,
|
|
LL_ADC_SAMPLINGTIME_COMMON_2,
|
|
(uint32_t)acq_time_index);
|
|
} else {
|
|
/* Both regs are used, value does not match any of them */
|
|
LOG_ERR("Only two different sampling times supported");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
break;
|
|
default:
|
|
LOG_ERR("Number of common sampling time channels not supported");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int adc_stm32_channel_setup(const struct device *dev,
|
|
const struct adc_channel_cfg *channel_cfg)
|
|
{
|
|
if (channel_cfg->differential) {
|
|
LOG_ERR("Differential channels are not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (channel_cfg->gain != ADC_GAIN_1) {
|
|
LOG_ERR("Invalid channel gain");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (channel_cfg->reference != ADC_REF_INTERNAL) {
|
|
LOG_ERR("Invalid channel reference");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (adc_stm32_sampling_time_setup(dev, channel_cfg->channel_id,
|
|
channel_cfg->acquisition_time) != 0) {
|
|
LOG_ERR("Invalid sampling time");
|
|
return -EINVAL;
|
|
}
|
|
|
|
LOG_DBG("Channel setup succeeded!");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This symbol takes the value 1 if one of the device instances */
|
|
/* is configured in dts with a domain clock */
|
|
#if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT
|
|
#define STM32_ADC_DOMAIN_CLOCK_SUPPORT 1
|
|
#else
|
|
#define STM32_ADC_DOMAIN_CLOCK_SUPPORT 0
|
|
#endif
|
|
|
|
static int adc_stm32_set_clock(const struct device *dev)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
|
|
ARG_UNUSED(adc); /* Necessary to avoid warnings on some series */
|
|
|
|
if (clock_control_on(clk,
|
|
(clock_control_subsys_t) &config->pclken[0]) != 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_ADC_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) {
|
|
/* Enable ADC clock source */
|
|
if (clock_control_configure(clk,
|
|
(clock_control_subsys_t) &config->pclken[1],
|
|
NULL) != 0) {
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F0X)
|
|
LL_ADC_SetClock(adc, config->clk_prescaler);
|
|
#elif defined(CONFIG_SOC_SERIES_STM32C0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32G0X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L0X) || \
|
|
(defined(CONFIG_SOC_SERIES_STM32WBX) && defined(ADC_SUPPORT_2_5_MSPS)) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WLX)
|
|
if ((config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV1) ||
|
|
(config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV2) ||
|
|
(config->clk_prescaler == LL_ADC_CLOCK_SYNC_PCLK_DIV4)) {
|
|
LL_ADC_SetClock(adc, config->clk_prescaler);
|
|
} else {
|
|
LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc),
|
|
config->clk_prescaler);
|
|
LL_ADC_SetClock(adc, LL_ADC_CLOCK_ASYNC);
|
|
}
|
|
#elif !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc),
|
|
config->clk_prescaler);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int adc_stm32_init(const struct device *dev)
|
|
{
|
|
struct adc_stm32_data *data = dev->data;
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
int err;
|
|
|
|
ARG_UNUSED(adc); /* Necessary to avoid warnings on some series */
|
|
|
|
LOG_DBG("Initializing %s", dev->name);
|
|
|
|
if (!device_is_ready(clk)) {
|
|
LOG_ERR("clock control device not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
data->dev = dev;
|
|
|
|
/*
|
|
* For series that use common channels for sampling time, all
|
|
* conversion time for all channels on one ADC instance has to
|
|
* be the same.
|
|
* For series that use two common channels, there can be up to two
|
|
* conversion times selected for all channels in a sequence.
|
|
* This additional table is for checking that the conversion time
|
|
* selection of all channels respects these requirements.
|
|
*/
|
|
data->acq_time_index[0] = -1;
|
|
data->acq_time_index[1] = -1;
|
|
|
|
adc_stm32_set_clock(dev);
|
|
|
|
/* Configure dt provided device signals when available */
|
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
|
|
if (err < 0) {
|
|
LOG_ERR("ADC pinctrl setup failed (%d)", err);
|
|
return err;
|
|
}
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
/* Enable the independent analog supply */
|
|
LL_PWR_EnableVDDA();
|
|
#endif /* CONFIG_SOC_SERIES_STM32U5X */
|
|
|
|
#ifdef CONFIG_ADC_STM32_DMA
|
|
if ((data->dma.dma_dev != NULL) &&
|
|
!device_is_ready(data->dma.dma_dev)) {
|
|
LOG_ERR("%s device not ready", data->dma.dma_dev->name);
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32L4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L5X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WBX) || \
|
|
defined(CONFIG_SOC_SERIES_STM32G4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32H5X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32H7X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
/*
|
|
* L4, WB, G4, H5, H7 and U5 series STM32 needs to be awaken from deep sleep
|
|
* mode, and restore its calibration parameters if there are some
|
|
* previously stored calibration parameters.
|
|
*/
|
|
LL_ADC_DisableDeepPowerDown(adc);
|
|
#endif
|
|
|
|
/*
|
|
* Many ADC modules need some time to be stabilized before performing
|
|
* any enable or calibration actions.
|
|
*/
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
LL_ADC_EnableInternalRegulator(adc);
|
|
k_busy_wait(LL_ADC_DELAY_INTERNAL_REGUL_STAB_US);
|
|
#endif
|
|
|
|
if (config->irq_cfg_func) {
|
|
config->irq_cfg_func();
|
|
}
|
|
|
|
#if defined(HAS_CALIBRATION)
|
|
adc_stm32_calibrate(dev);
|
|
LL_ADC_REG_SetTriggerSource(adc, LL_ADC_REG_TRIG_SOFTWARE);
|
|
#endif /* HAS_CALIBRATION */
|
|
|
|
adc_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
static int adc_stm32_suspend_setup(const struct device *dev)
|
|
{
|
|
const struct adc_stm32_cfg *config = dev->config;
|
|
ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
|
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
int err;
|
|
|
|
/* Disable ADC */
|
|
adc_stm32_disable(adc);
|
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc) && \
|
|
!DT_HAS_COMPAT_STATUS_OKAY(st_stm32f4_adc)
|
|
/* Disable ADC internal voltage regulator */
|
|
LL_ADC_DisableInternalRegulator(adc);
|
|
while (LL_ADC_IsInternalRegulatorEnabled(adc) == 1U) {
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32L4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L5X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32WBX) || \
|
|
defined(CONFIG_SOC_SERIES_STM32G4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32H5X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32H7X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
/*
|
|
* L4, WB, G4, H5, H7 and U5 series STM32 needs to be put into
|
|
* deep sleep mode.
|
|
*/
|
|
|
|
LL_ADC_EnableDeepPowerDown(adc);
|
|
#endif
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32U5X)
|
|
/* Disable the independent analog supply */
|
|
LL_PWR_DisableVDDA();
|
|
#endif /* CONFIG_SOC_SERIES_STM32U5X */
|
|
|
|
/* Stop device clock. Note: fixed clocks are not handled yet. */
|
|
err = clock_control_off(clk, (clock_control_subsys_t)&config->pclken[0]);
|
|
if (err != 0) {
|
|
LOG_ERR("Could not disable ADC clock");
|
|
return err;
|
|
}
|
|
|
|
/* Move pins to sleep state */
|
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
|
|
if ((err < 0) && (err != -ENOENT)) {
|
|
/*
|
|
* If returning -ENOENT, no pins where defined for sleep mode :
|
|
* Do not output on console (might sleep already) when going to sleep,
|
|
* "ADC pinctrl sleep state not available"
|
|
* and don't block PM suspend.
|
|
* Else return the error.
|
|
*/
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int adc_stm32_pm_action(const struct device *dev,
|
|
enum pm_device_action action)
|
|
{
|
|
switch (action) {
|
|
case PM_DEVICE_ACTION_RESUME:
|
|
return adc_stm32_init(dev);
|
|
case PM_DEVICE_ACTION_SUSPEND:
|
|
return adc_stm32_suspend_setup(dev);
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM_DEVICE */
|
|
|
|
static const struct adc_driver_api api_stm32_driver_api = {
|
|
.channel_setup = adc_stm32_channel_setup,
|
|
.read = adc_stm32_read,
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
.read_async = adc_stm32_read_async,
|
|
#endif
|
|
.ref_internal = STM32_ADC_VREF_MV, /* VREF is usually connected to VDD */
|
|
};
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F0X)
|
|
/* LL_ADC_CLOCK_ASYNC_DIV1 doesn't exist in F0 LL. Define it here. */
|
|
#define LL_ADC_CLOCK_ASYNC_DIV1 LL_ADC_CLOCK_ASYNC
|
|
#endif
|
|
|
|
/* st_prescaler property requires 2 elements : clock ASYNC/SYNC and DIV */
|
|
#define ADC_STM32_CLOCK(x) DT_INST_PROP(x, st_adc_clock_source)
|
|
#define ADC_STM32_DIV(x) DT_INST_PROP(x, st_adc_prescaler)
|
|
|
|
/* Macro to set the prefix depending on the 1st element: check if it is SYNC or ASYNC */
|
|
#define ADC_STM32_CLOCK_PREFIX(x) \
|
|
COND_CODE_1(IS_EQ(ADC_STM32_CLOCK(x), SYNC), \
|
|
(LL_ADC_CLOCK_SYNC_PCLK_DIV), \
|
|
(LL_ADC_CLOCK_ASYNC_DIV))
|
|
|
|
/* Concat prefix (1st element) and DIV value (2nd element) of st,adc-prescaler */
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32f1_adc)
|
|
#define ADC_STM32_DT_PRESC(x) 0
|
|
#else
|
|
#define ADC_STM32_DT_PRESC(x) \
|
|
_CONCAT(ADC_STM32_CLOCK_PREFIX(x), ADC_STM32_DIV(x))
|
|
#endif
|
|
|
|
#if defined(CONFIG_ADC_STM32_DMA)
|
|
|
|
#define ADC_DMA_CHANNEL_INIT(index, src_dev, dest_dev) \
|
|
.dma = { \
|
|
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_IDX(index, 0)), \
|
|
.channel = DT_INST_DMAS_CELL_BY_IDX(index, 0, channel), \
|
|
.dma_cfg = { \
|
|
.dma_slot = STM32_DMA_SLOT_BY_IDX(index, 0, slot), \
|
|
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
|
|
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
|
|
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE( \
|
|
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
|
|
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE( \
|
|
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
|
|
.source_burst_length = 1, /* SINGLE transfer */ \
|
|
.dest_burst_length = 1, /* SINGLE transfer */ \
|
|
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
|
|
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
|
|
.dma_callback = dma_callback, \
|
|
.block_count = 2, \
|
|
}, \
|
|
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
|
|
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
|
|
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
|
|
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
|
|
}
|
|
|
|
#define ADC_STM32_IRQ_FUNC(index) \
|
|
.irq_cfg_func = NULL,
|
|
|
|
#else /* CONFIG_ADC_STM32_DMA */
|
|
|
|
/*
|
|
* For series that share interrupt lines for multiple ADC instances
|
|
* and have separate interrupt lines for other ADCs (example,
|
|
* STM32G473 has 5 ADC instances, ADC1 and ADC2 share IRQn 18 while
|
|
* ADC3, ADC4 and ADC5 use IRQns 47, 61 and 62 respectively), generate
|
|
* a single common ISR function for each IRQn and call adc_stm32_isr
|
|
* for each device using that interrupt line for all enabled ADCs.
|
|
*
|
|
* To achieve the above, a "first" ADC instance must be chosen for all
|
|
* ADC instances sharing the same IRQn. This "first" ADC instance
|
|
* generates the code for the common ISR and for installing and
|
|
* enabling it while any other ADC sharing the same IRQn skips this
|
|
* code generation and does nothing. The common ISR code is generated
|
|
* to include calls to adc_stm32_isr for all instances using that same
|
|
* IRQn. From the example above, four ISR functions would be generated
|
|
* for IRQn 18, 47, 61 and 62, with possible "first" ADC instances
|
|
* being ADC1, ADC3, ADC4 and ADC5 if all ADCs were enabled, with the
|
|
* ISR function 18 calling adc_stm32_isr for both ADC1 and ADC2.
|
|
*
|
|
* For some of the macros below, pseudo-code is provided to describe
|
|
* its function.
|
|
*/
|
|
|
|
/*
|
|
* return (irqn == device_irqn(index)) ? index : NULL
|
|
*/
|
|
#define FIRST_WITH_IRQN_INTERNAL(index, irqn) \
|
|
COND_CODE_1(IS_EQ(irqn, DT_INST_IRQN(index)), (index,), (EMPTY,))
|
|
|
|
/*
|
|
* Returns the "first" instance's index:
|
|
*
|
|
* instances = []
|
|
* for instance in all_active_adcs:
|
|
* instances.append(first_with_irqn_internal(device_irqn(index)))
|
|
* for instance in instances:
|
|
* if instance == NULL:
|
|
* instances.remove(instance)
|
|
* return instances[0]
|
|
*/
|
|
#define FIRST_WITH_IRQN(index) \
|
|
GET_ARG_N(1, LIST_DROP_EMPTY(DT_INST_FOREACH_STATUS_OKAY_VARGS(FIRST_WITH_IRQN_INTERNAL, \
|
|
DT_INST_IRQN(index))))
|
|
|
|
/*
|
|
* Provides code for calling adc_stm32_isr for an instance if its IRQn
|
|
* matches:
|
|
*
|
|
* if (irqn == device_irqn(index)):
|
|
* return "adc_stm32_isr(DEVICE_DT_INST_GET(index));"
|
|
*/
|
|
#define HANDLE_IRQS(index, irqn) \
|
|
COND_CODE_1(IS_EQ(irqn, DT_INST_IRQN(index)), (adc_stm32_isr(DEVICE_DT_INST_GET(index));), \
|
|
(EMPTY))
|
|
|
|
/*
|
|
* Name of the common ISR for a given IRQn (taken from a device with a
|
|
* given index). Example, for an ADC instance with IRQn 18, returns
|
|
* "adc_stm32_isr_18".
|
|
*/
|
|
#define ISR_FUNC(index) UTIL_CAT(adc_stm32_isr_, DT_INST_IRQN(index))
|
|
|
|
/*
|
|
* Macro for generating code for the common ISRs (by looping of all
|
|
* ADC instances that share the same IRQn as that of the given device
|
|
* by index) and the function for setting up the ISR.
|
|
*
|
|
* Here is where both "first" and non-"first" instances have code
|
|
* generated for their interrupts via HANDLE_IRQS.
|
|
*/
|
|
#define GENERATE_ISR_CODE(index) \
|
|
static void ISR_FUNC(index)(void) \
|
|
{ \
|
|
DT_INST_FOREACH_STATUS_OKAY_VARGS(HANDLE_IRQS, DT_INST_IRQN(index)) \
|
|
} \
|
|
\
|
|
static void UTIL_CAT(ISR_FUNC(index), _init)(void) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(index), DT_INST_IRQ(index, priority), ISR_FUNC(index), \
|
|
NULL, 0); \
|
|
irq_enable(DT_INST_IRQN(index)); \
|
|
}
|
|
|
|
/*
|
|
* Limit generating code to only the "first" instance:
|
|
*
|
|
* if (first_with_irqn(index) == index):
|
|
* generate_isr_code(index)
|
|
*/
|
|
#define GENERATE_ISR(index) \
|
|
COND_CODE_1(IS_EQ(index, FIRST_WITH_IRQN(index)), (GENERATE_ISR_CODE(index)), (EMPTY))
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(GENERATE_ISR)
|
|
|
|
/* Only "first" instances need to call the ISR setup function */
|
|
#define ADC_STM32_IRQ_FUNC(index) \
|
|
.irq_cfg_func = COND_CODE_1(IS_EQ(index, FIRST_WITH_IRQN(index)), \
|
|
(UTIL_CAT(ISR_FUNC(index), _init)), (NULL)),
|
|
|
|
#define ADC_DMA_CHANNEL_INIT(index, src_dev, dest_dev)
|
|
|
|
#endif /* CONFIG_ADC_STM32_DMA */
|
|
|
|
#define ADC_DMA_CHANNEL(id, src, dest) \
|
|
COND_CODE_1(DT_INST_DMAS_HAS_IDX(id, 0), \
|
|
(ADC_DMA_CHANNEL_INIT(id, src, dest)), \
|
|
(/* Required for other adc instances without dma */))
|
|
|
|
#define ADC_STM32_INIT(index) \
|
|
\
|
|
PINCTRL_DT_INST_DEFINE(index); \
|
|
\
|
|
static const struct stm32_pclken pclken_##index[] = \
|
|
STM32_DT_INST_CLOCKS(index); \
|
|
\
|
|
static const struct adc_stm32_cfg adc_stm32_cfg_##index = { \
|
|
.base = (ADC_TypeDef *)DT_INST_REG_ADDR(index), \
|
|
ADC_STM32_IRQ_FUNC(index) \
|
|
.pclken = pclken_##index, \
|
|
.pclk_len = DT_INST_NUM_CLOCKS(index), \
|
|
.clk_prescaler = ADC_STM32_DT_PRESC(index), \
|
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
|
|
.sequencer_type = DT_INST_PROP(index, st_adc_sequencer), \
|
|
.sampling_time_table = DT_INST_PROP(index, sampling_times), \
|
|
.num_sampling_time_common_channels = \
|
|
DT_INST_PROP_OR(index, num_sampling_time_common_channels, 0),\
|
|
.res_table_size = DT_INST_PROP_LEN(index, resolutions), \
|
|
.res_table = DT_INST_PROP(index, resolutions), \
|
|
}; \
|
|
\
|
|
static struct adc_stm32_data adc_stm32_data_##index = { \
|
|
ADC_CONTEXT_INIT_TIMER(adc_stm32_data_##index, ctx), \
|
|
ADC_CONTEXT_INIT_LOCK(adc_stm32_data_##index, ctx), \
|
|
ADC_CONTEXT_INIT_SYNC(adc_stm32_data_##index, ctx), \
|
|
ADC_DMA_CHANNEL(index, PERIPHERAL, MEMORY) \
|
|
}; \
|
|
\
|
|
PM_DEVICE_DT_INST_DEFINE(index, adc_stm32_pm_action); \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(index, \
|
|
&adc_stm32_init, PM_DEVICE_DT_INST_GET(index), \
|
|
&adc_stm32_data_##index, &adc_stm32_cfg_##index, \
|
|
POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
|
|
&api_stm32_driver_api);
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(ADC_STM32_INIT)
|