zephyr/drivers/i2s/i2s_ll_stm32.c
Emil Lindqvist 548fb97142 cache: stm32: add new cache API to display and i2s
Use sys_cache API to handle cache flush/invalidate.

Signed-off-by: Emil Lindqvist <emil@lindq.gr>
2024-01-30 14:12:57 +00:00

989 lines
25 KiB
C

/*
* Copyright (c) 2018 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_i2s
#include <string.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/i2s.h>
#include <zephyr/drivers/dma/dma_stm32.h>
#include <soc.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_spi.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/cache.h>
#include "i2s_ll_stm32.h"
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(i2s_ll_stm32);
#define MODULO_INC(val, max) { val = (++val < max) ? val : 0; }
static unsigned int div_round_closest(uint32_t dividend, uint32_t divisor)
{
return (dividend + (divisor / 2U)) / divisor;
}
/*
* Get data from the queue
*/
static int queue_get(struct ring_buf *rb, void **mem_block, size_t *size)
{
unsigned int key;
key = irq_lock();
if (rb->tail == rb->head) {
/* Ring buffer is empty */
irq_unlock(key);
return -ENOMEM;
}
*mem_block = rb->buf[rb->tail].mem_block;
*size = rb->buf[rb->tail].size;
MODULO_INC(rb->tail, rb->len);
irq_unlock(key);
return 0;
}
/*
* Put data in the queue
*/
static int queue_put(struct ring_buf *rb, void *mem_block, size_t size)
{
uint16_t head_next;
unsigned int key;
key = irq_lock();
head_next = rb->head;
MODULO_INC(head_next, rb->len);
if (head_next == rb->tail) {
/* Ring buffer is full */
irq_unlock(key);
return -ENOMEM;
}
rb->buf[rb->head].mem_block = mem_block;
rb->buf[rb->head].size = size;
rb->head = head_next;
irq_unlock(key);
return 0;
}
static int i2s_stm32_enable_clock(const struct device *dev)
{
const struct i2s_stm32_cfg *cfg = dev->config;
const struct device *clk;
int ret;
clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
ret = clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]);
if (ret != 0) {
LOG_ERR("Could not enable I2S clock");
return -EIO;
}
if (cfg->pclk_len > 1) {
/* Enable I2S clock source */
ret = clock_control_configure(clk,
(clock_control_subsys_t)&cfg->pclken[1],
NULL);
if (ret < 0) {
LOG_ERR("Could not configure I2S domain clock");
return -EIO;
}
}
return 0;
}
static int i2s_stm32_set_clock(const struct device *dev,
uint32_t bit_clk_freq)
{
const struct i2s_stm32_cfg *cfg = dev->config;
uint32_t freq_in = 0U;
uint8_t i2s_div, i2s_odd;
if (cfg->pclk_len > 1) {
if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t)&cfg->pclken[1],
&freq_in) < 0) {
LOG_ERR("Failed call clock_control_get_rate(pclken[1])");
return -EIO;
}
}
/*
* The ratio between input clock (I2SxClk) and output
* clock on the pad (I2S_CK) is obtained using the
* following formula:
* (i2s_div * 2) + i2s_odd
*/
i2s_div = div_round_closest(freq_in, bit_clk_freq);
i2s_odd = (i2s_div & 0x1) ? 1 : 0;
i2s_div >>= 1;
/* i2s_div == 0 || i2s_div == 1 are forbidden */
if (i2s_div < 2U) {
LOG_ERR("The linear prescaler value is unsupported");
return -EINVAL;
}
LOG_DBG("i2s_div: %d - i2s_odd: %d", i2s_div, i2s_odd);
LL_I2S_SetPrescalerLinear(cfg->i2s, i2s_div);
LL_I2S_SetPrescalerParity(cfg->i2s, i2s_odd);
return 0;
}
static int i2s_stm32_configure(const struct device *dev, enum i2s_dir dir,
const struct i2s_config *i2s_cfg)
{
const struct i2s_stm32_cfg *const cfg = dev->config;
struct i2s_stm32_data *const dev_data = dev->data;
/* For words greater than 16-bit the channel length is considered 32-bit */
const uint32_t channel_length = i2s_cfg->word_size > 16U ? 32U : 16U;
/*
* comply with the i2s_config driver remark:
* When I2S data format is selected parameter channels is ignored,
* number of words in a frame is always 2.
*/
const uint32_t num_channels = i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK
? 2U : i2s_cfg->channels;
struct stream *stream;
uint32_t bit_clk_freq;
bool enable_mck;
int ret;
if (dir == I2S_DIR_RX) {
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
return -ENOSYS;
#endif
stream = &dev_data->rx;
} else if (dir == I2S_DIR_TX) {
stream = &dev_data->tx;
} else if (dir == I2S_DIR_BOTH) {
return -ENOSYS;
} else {
LOG_ERR("Either RX or TX direction must be selected");
return -EINVAL;
}
if (stream->state != I2S_STATE_NOT_READY &&
stream->state != I2S_STATE_READY) {
LOG_ERR("invalid state");
return -EINVAL;
}
stream->master = true;
if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE ||
i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) {
stream->master = false;
}
if (i2s_cfg->frame_clk_freq == 0U) {
stream->queue_drop(stream);
memset(&stream->cfg, 0, sizeof(struct i2s_config));
stream->state = I2S_STATE_NOT_READY;
return 0;
}
memcpy(&stream->cfg, i2s_cfg, sizeof(struct i2s_config));
/* conditions to enable master clock output */
enable_mck = stream->master && cfg->master_clk_sel;
/* set I2S bitclock */
bit_clk_freq = i2s_cfg->frame_clk_freq *
channel_length * num_channels;
if (enable_mck) {
/*
* Compensate for the master clock dividers.
* MCK = N * CK, where N:
* 8 when the channel frame is 16-bit wide
* 4 when the channel frame is 32-bit wide
*/
bit_clk_freq *= channel_length == 16U ? 4U * 2U : 4U;
}
ret = i2s_stm32_set_clock(dev, bit_clk_freq);
if (ret < 0) {
return ret;
}
/* set I2S Master Clock output in the MCK pin, enabled in the DT */
if (enable_mck) {
LL_I2S_EnableMasterClock(cfg->i2s);
} else {
LL_I2S_DisableMasterClock(cfg->i2s);
}
/*
* set I2S Data Format
* 16-bit data extended on 32-bit channel length excluded
*/
if (i2s_cfg->word_size == 16U) {
LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_16B);
} else if (i2s_cfg->word_size == 24U) {
LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_24B);
} else if (i2s_cfg->word_size == 32U) {
LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_32B);
} else {
LOG_ERR("invalid word size");
return -EINVAL;
}
/* set I2S Standard */
switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
case I2S_FMT_DATA_FORMAT_I2S:
LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PHILIPS);
break;
case I2S_FMT_DATA_FORMAT_PCM_SHORT:
LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_SHORT);
break;
case I2S_FMT_DATA_FORMAT_PCM_LONG:
LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_LONG);
break;
case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_MSB);
break;
case I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED:
LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_LSB);
break;
default:
LOG_ERR("Unsupported I2S data format");
return -EINVAL;
}
/* set I2S clock polarity */
if ((i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) == I2S_FMT_BIT_CLK_INV)
LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_HIGH);
else
LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_LOW);
stream->state = I2S_STATE_READY;
return 0;
}
static int i2s_stm32_trigger(const struct device *dev, enum i2s_dir dir,
enum i2s_trigger_cmd cmd)
{
struct i2s_stm32_data *const dev_data = dev->data;
struct stream *stream;
unsigned int key;
int ret;
if (dir == I2S_DIR_RX) {
stream = &dev_data->rx;
} else if (dir == I2S_DIR_TX) {
stream = &dev_data->tx;
} else if (dir == I2S_DIR_BOTH) {
return -ENOSYS;
} else {
LOG_ERR("Either RX or TX direction must be selected");
return -EINVAL;
}
switch (cmd) {
case I2S_TRIGGER_START:
if (stream->state != I2S_STATE_READY) {
LOG_ERR("START trigger: invalid state %d",
stream->state);
return -EIO;
}
__ASSERT_NO_MSG(stream->mem_block == NULL);
ret = stream->stream_start(stream, dev);
if (ret < 0) {
LOG_ERR("START trigger failed %d", ret);
return ret;
}
stream->state = I2S_STATE_RUNNING;
stream->last_block = false;
break;
case I2S_TRIGGER_STOP:
key = irq_lock();
if (stream->state != I2S_STATE_RUNNING) {
irq_unlock(key);
LOG_ERR("STOP trigger: invalid state");
return -EIO;
}
irq_unlock(key);
stream->stream_disable(stream, dev);
stream->queue_drop(stream);
stream->state = I2S_STATE_READY;
stream->last_block = true;
break;
case I2S_TRIGGER_DRAIN:
key = irq_lock();
if (stream->state != I2S_STATE_RUNNING) {
irq_unlock(key);
LOG_ERR("DRAIN trigger: invalid state");
return -EIO;
}
stream->stream_disable(stream, dev);
stream->queue_drop(stream);
stream->state = I2S_STATE_READY;
irq_unlock(key);
break;
case I2S_TRIGGER_DROP:
if (stream->state == I2S_STATE_NOT_READY) {
LOG_ERR("DROP trigger: invalid state");
return -EIO;
}
stream->stream_disable(stream, dev);
stream->queue_drop(stream);
stream->state = I2S_STATE_READY;
break;
case I2S_TRIGGER_PREPARE:
if (stream->state != I2S_STATE_ERROR) {
LOG_ERR("PREPARE trigger: invalid state");
return -EIO;
}
stream->state = I2S_STATE_READY;
stream->queue_drop(stream);
break;
default:
LOG_ERR("Unsupported trigger command");
return -EINVAL;
}
return 0;
}
static int i2s_stm32_read(const struct device *dev, void **mem_block,
size_t *size)
{
struct i2s_stm32_data *const dev_data = dev->data;
int ret;
if (dev_data->rx.state == I2S_STATE_NOT_READY) {
LOG_DBG("invalid state");
return -EIO;
}
if (dev_data->rx.state != I2S_STATE_ERROR) {
ret = k_sem_take(&dev_data->rx.sem,
SYS_TIMEOUT_MS(dev_data->rx.cfg.timeout));
if (ret < 0) {
return ret;
}
}
/* Get data from the beginning of RX queue */
ret = queue_get(&dev_data->rx.mem_block_queue, mem_block, size);
if (ret < 0) {
return -EIO;
}
return 0;
}
static int i2s_stm32_write(const struct device *dev, void *mem_block,
size_t size)
{
struct i2s_stm32_data *const dev_data = dev->data;
int ret;
if (dev_data->tx.state != I2S_STATE_RUNNING &&
dev_data->tx.state != I2S_STATE_READY) {
LOG_DBG("invalid state");
return -EIO;
}
ret = k_sem_take(&dev_data->tx.sem,
SYS_TIMEOUT_MS(dev_data->tx.cfg.timeout));
if (ret < 0) {
return ret;
}
/* Add data to the end of the TX queue */
queue_put(&dev_data->tx.mem_block_queue, mem_block, size);
return 0;
}
static const struct i2s_driver_api i2s_stm32_driver_api = {
.configure = i2s_stm32_configure,
.read = i2s_stm32_read,
.write = i2s_stm32_write,
.trigger = i2s_stm32_trigger,
};
#define STM32_DMA_NUM_CHANNELS 8
static const struct device *active_dma_rx_channel[STM32_DMA_NUM_CHANNELS];
static const struct device *active_dma_tx_channel[STM32_DMA_NUM_CHANNELS];
static int reload_dma(const struct device *dev_dma, uint32_t channel,
struct dma_config *dcfg, void *src, void *dst,
uint32_t blk_size)
{
int ret;
ret = dma_reload(dev_dma, channel, (uint32_t)src, (uint32_t)dst, blk_size);
if (ret < 0) {
return ret;
}
ret = dma_start(dev_dma, channel);
return ret;
}
static int start_dma(const struct device *dev_dma, uint32_t channel,
struct dma_config *dcfg, void *src,
bool src_addr_increment, void *dst,
bool dst_addr_increment, uint8_t fifo_threshold,
uint32_t blk_size)
{
struct dma_block_config blk_cfg;
int ret;
memset(&blk_cfg, 0, sizeof(blk_cfg));
blk_cfg.block_size = blk_size;
blk_cfg.source_address = (uint32_t)src;
blk_cfg.dest_address = (uint32_t)dst;
if (src_addr_increment) {
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
if (dst_addr_increment) {
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
blk_cfg.fifo_mode_control = fifo_threshold;
dcfg->head_block = &blk_cfg;
ret = dma_config(dev_dma, channel, dcfg);
if (ret < 0) {
return ret;
}
ret = dma_start(dev_dma, channel);
return ret;
}
static const struct device *get_dev_from_rx_dma_channel(uint32_t dma_channel);
static const struct device *get_dev_from_tx_dma_channel(uint32_t dma_channel);
static void rx_stream_disable(struct stream *stream, const struct device *dev);
static void tx_stream_disable(struct stream *stream, const struct device *dev);
/* This function is executed in the interrupt context */
static void dma_rx_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status)
{
const struct device *dev = get_dev_from_rx_dma_channel(channel);
const struct i2s_stm32_cfg *cfg = dev->config;
struct i2s_stm32_data *const dev_data = dev->data;
struct stream *stream = &dev_data->rx;
void *mblk_tmp;
int ret;
if (status < 0) {
ret = -EIO;
stream->state = I2S_STATE_ERROR;
goto rx_disable;
}
__ASSERT_NO_MSG(stream->mem_block != NULL);
/* Stop reception if there was an error */
if (stream->state == I2S_STATE_ERROR) {
goto rx_disable;
}
mblk_tmp = stream->mem_block;
/* Prepare to receive the next data block */
ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block,
K_NO_WAIT);
if (ret < 0) {
stream->state = I2S_STATE_ERROR;
goto rx_disable;
}
ret = reload_dma(stream->dev_dma, stream->dma_channel,
&stream->dma_cfg,
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
(void *)LL_SPI_DMA_GetRxRegAddr(cfg->i2s),
#else
(void *)LL_SPI_DMA_GetRegAddr(cfg->i2s),
#endif
stream->mem_block,
stream->cfg.block_size);
if (ret < 0) {
LOG_DBG("Failed to start RX DMA transfer: %d", ret);
goto rx_disable;
}
/* Assure cache coherency after DMA write operation */
sys_cache_data_invd_range(mblk_tmp, stream->cfg.block_size);
/* All block data received */
ret = queue_put(&stream->mem_block_queue, mblk_tmp,
stream->cfg.block_size);
if (ret < 0) {
stream->state = I2S_STATE_ERROR;
goto rx_disable;
}
k_sem_give(&stream->sem);
/* Stop reception if we were requested */
if (stream->state == I2S_STATE_STOPPING) {
stream->state = I2S_STATE_READY;
goto rx_disable;
}
return;
rx_disable:
rx_stream_disable(stream, dev);
}
static void dma_tx_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status)
{
const struct device *dev = get_dev_from_tx_dma_channel(channel);
const struct i2s_stm32_cfg *cfg = dev->config;
struct i2s_stm32_data *const dev_data = dev->data;
struct stream *stream = &dev_data->tx;
size_t mem_block_size;
int ret;
if (status < 0) {
ret = -EIO;
stream->state = I2S_STATE_ERROR;
goto tx_disable;
}
__ASSERT_NO_MSG(stream->mem_block != NULL);
/* All block data sent */
k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block);
stream->mem_block = NULL;
/* Stop transmission if there was an error */
if (stream->state == I2S_STATE_ERROR) {
LOG_ERR("TX error detected");
goto tx_disable;
}
/* Stop transmission if we were requested */
if (stream->last_block) {
stream->state = I2S_STATE_READY;
goto tx_disable;
}
/* Prepare to send the next data block */
ret = queue_get(&stream->mem_block_queue, &stream->mem_block,
&mem_block_size);
if (ret < 0) {
if (stream->state == I2S_STATE_STOPPING) {
stream->state = I2S_STATE_READY;
} else {
stream->state = I2S_STATE_ERROR;
}
goto tx_disable;
}
k_sem_give(&stream->sem);
/* Assure cache coherency before DMA read operation */
sys_cache_data_flush_range(stream->mem_block, mem_block_size);
ret = reload_dma(stream->dev_dma, stream->dma_channel,
&stream->dma_cfg,
stream->mem_block,
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
(void *)LL_SPI_DMA_GetTxRegAddr(cfg->i2s),
#else
(void *)LL_SPI_DMA_GetRegAddr(cfg->i2s),
#endif
stream->cfg.block_size);
if (ret < 0) {
LOG_DBG("Failed to start TX DMA transfer: %d", ret);
goto tx_disable;
}
return;
tx_disable:
tx_stream_disable(stream, dev);
}
static uint32_t i2s_stm32_irq_count;
static uint32_t i2s_stm32_irq_ovr_count;
static uint32_t i2s_stm32_irq_udr_count;
static void i2s_stm32_isr(const struct device *dev)
{
const struct i2s_stm32_cfg *cfg = dev->config;
struct i2s_stm32_data *const dev_data = dev->data;
struct stream *stream = &dev_data->rx;
LOG_ERR("%s: err=%d", __func__, (int)LL_I2S_ReadReg(cfg->i2s, SR));
stream->state = I2S_STATE_ERROR;
/* OVR error must be explicitly cleared */
if (LL_I2S_IsActiveFlag_OVR(cfg->i2s)) {
i2s_stm32_irq_ovr_count++;
LL_I2S_ClearFlag_OVR(cfg->i2s);
}
/* NOTE: UDR error must be explicitly cleared on STM32H7 */
if (LL_I2S_IsActiveFlag_UDR(cfg->i2s)) {
i2s_stm32_irq_udr_count++;
LL_I2S_ClearFlag_UDR(cfg->i2s);
}
i2s_stm32_irq_count++;
}
static int i2s_stm32_initialize(const struct device *dev)
{
const struct i2s_stm32_cfg *cfg = dev->config;
struct i2s_stm32_data *const dev_data = dev->data;
int ret, i;
/* Enable I2S clock propagation */
ret = i2s_stm32_enable_clock(dev);
if (ret < 0) {
LOG_ERR("%s: clock enabling failed: %d", __func__, ret);
return -EIO;
}
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("I2S pinctrl setup failed (%d)", ret);
return ret;
}
cfg->irq_config(dev);
k_sem_init(&dev_data->rx.sem, 0, CONFIG_I2S_STM32_RX_BLOCK_COUNT);
k_sem_init(&dev_data->tx.sem, CONFIG_I2S_STM32_TX_BLOCK_COUNT,
CONFIG_I2S_STM32_TX_BLOCK_COUNT);
for (i = 0; i < STM32_DMA_NUM_CHANNELS; i++) {
active_dma_rx_channel[i] = NULL;
active_dma_tx_channel[i] = NULL;
}
/* Get the binding to the DMA device */
if (!device_is_ready(dev_data->tx.dev_dma)) {
LOG_ERR("%s device not ready", dev_data->tx.dev_dma->name);
return -ENODEV;
}
if (!device_is_ready(dev_data->rx.dev_dma)) {
LOG_ERR("%s device not ready", dev_data->rx.dev_dma->name);
return -ENODEV;
}
LOG_INF("%s inited", dev->name);
return 0;
}
static int rx_stream_start(struct stream *stream, const struct device *dev)
{
const struct i2s_stm32_cfg *cfg = dev->config;
int ret;
ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block,
K_NO_WAIT);
if (ret < 0) {
return ret;
}
if (stream->master) {
LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_RX);
} else {
LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_RX);
}
/* remember active RX DMA channel (used in callback) */
active_dma_rx_channel[stream->dma_channel] = dev;
ret = start_dma(stream->dev_dma, stream->dma_channel,
&stream->dma_cfg,
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
(void *)LL_SPI_DMA_GetRxRegAddr(cfg->i2s),
#else
(void *)LL_SPI_DMA_GetRegAddr(cfg->i2s),
#endif
stream->src_addr_increment, stream->mem_block,
stream->dst_addr_increment, stream->fifo_threshold,
stream->cfg.block_size);
if (ret < 0) {
LOG_ERR("Failed to start RX DMA transfer: %d", ret);
return ret;
}
LL_I2S_EnableDMAReq_RX(cfg->i2s);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
LL_I2S_EnableIT_OVR(cfg->i2s);
LL_I2S_EnableIT_UDR(cfg->i2s);
LL_I2S_EnableIT_FRE(cfg->i2s);
LL_I2S_Enable(cfg->i2s);
LL_SPI_StartMasterTransfer(cfg->i2s);
#else
LL_I2S_EnableIT_ERR(cfg->i2s);
LL_I2S_Enable(cfg->i2s);
#endif
return 0;
}
static int tx_stream_start(struct stream *stream, const struct device *dev)
{
const struct i2s_stm32_cfg *cfg = dev->config;
size_t mem_block_size;
int ret;
ret = queue_get(&stream->mem_block_queue, &stream->mem_block,
&mem_block_size);
if (ret < 0) {
return ret;
}
k_sem_give(&stream->sem);
/* Assure cache coherency before DMA read operation */
sys_cache_data_flush_range(stream->mem_block, mem_block_size);
if (stream->master) {
LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_TX);
} else {
LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_TX);
}
/* remember active TX DMA channel (used in callback) */
active_dma_tx_channel[stream->dma_channel] = dev;
ret = start_dma(stream->dev_dma, stream->dma_channel,
&stream->dma_cfg,
stream->mem_block, stream->src_addr_increment,
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
(void *)LL_SPI_DMA_GetTxRegAddr(cfg->i2s),
#else
(void *)LL_SPI_DMA_GetRegAddr(cfg->i2s),
#endif
stream->dst_addr_increment, stream->fifo_threshold,
stream->cfg.block_size);
if (ret < 0) {
LOG_ERR("Failed to start TX DMA transfer: %d", ret);
return ret;
}
LL_I2S_EnableDMAReq_TX(cfg->i2s);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
LL_I2S_EnableIT_OVR(cfg->i2s);
LL_I2S_EnableIT_UDR(cfg->i2s);
LL_I2S_EnableIT_FRE(cfg->i2s);
LL_I2S_Enable(cfg->i2s);
LL_SPI_StartMasterTransfer(cfg->i2s);
#else
LL_I2S_EnableIT_ERR(cfg->i2s);
LL_I2S_Enable(cfg->i2s);
#endif
return 0;
}
static void rx_stream_disable(struct stream *stream, const struct device *dev)
{
const struct i2s_stm32_cfg *cfg = dev->config;
LL_I2S_DisableDMAReq_RX(cfg->i2s);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
LL_I2S_DisableIT_OVR(cfg->i2s);
LL_I2S_DisableIT_UDR(cfg->i2s);
LL_I2S_DisableIT_FRE(cfg->i2s);
#else
LL_I2S_DisableIT_ERR(cfg->i2s);
#endif
dma_stop(stream->dev_dma, stream->dma_channel);
if (stream->mem_block != NULL) {
k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block);
stream->mem_block = NULL;
}
LL_I2S_Disable(cfg->i2s);
active_dma_rx_channel[stream->dma_channel] = NULL;
}
static void tx_stream_disable(struct stream *stream, const struct device *dev)
{
const struct i2s_stm32_cfg *cfg = dev->config;
LL_I2S_DisableDMAReq_TX(cfg->i2s);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s)
LL_I2S_DisableIT_OVR(cfg->i2s);
LL_I2S_DisableIT_UDR(cfg->i2s);
LL_I2S_DisableIT_FRE(cfg->i2s);
#else
LL_I2S_DisableIT_ERR(cfg->i2s);
#endif
dma_stop(stream->dev_dma, stream->dma_channel);
if (stream->mem_block != NULL) {
k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block);
stream->mem_block = NULL;
}
LL_I2S_Disable(cfg->i2s);
active_dma_tx_channel[stream->dma_channel] = NULL;
}
static void rx_queue_drop(struct stream *stream)
{
size_t size;
void *mem_block;
while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) {
k_mem_slab_free(stream->cfg.mem_slab, mem_block);
}
k_sem_reset(&stream->sem);
}
static void tx_queue_drop(struct stream *stream)
{
size_t size;
void *mem_block;
unsigned int n = 0U;
while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) {
k_mem_slab_free(stream->cfg.mem_slab, mem_block);
n++;
}
for (; n > 0; n--) {
k_sem_give(&stream->sem);
}
}
static const struct device *get_dev_from_rx_dma_channel(uint32_t dma_channel)
{
return active_dma_rx_channel[dma_channel];
}
static const struct device *get_dev_from_tx_dma_channel(uint32_t dma_channel)
{
return active_dma_tx_channel[dma_channel];
}
/* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */
#define I2S_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
.dir = { \
.dev_dma = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \
.dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
.dma_cfg = { \
.block_count = 2, \
.dma_slot = STM32_DMA_SLOT(index, dir, slot),\
.channel_direction = src_dev##_TO_##dest_dev, \
.source_data_size = 2, /* 16bit default */ \
.dest_data_size = 2, /* 16bit default */ \
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, \
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
.dma_callback = dma_##dir##_callback, \
}, \
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \
STM32_DMA_FEATURES(index, dir)), \
.stream_start = dir##_stream_start, \
.stream_disable = dir##_stream_disable, \
.queue_drop = dir##_queue_drop, \
.mem_block_queue.buf = dir##_##index##_ring_buf, \
.mem_block_queue.len = ARRAY_SIZE(dir##_##index##_ring_buf) \
}
#define I2S_STM32_INIT(index) \
\
static void i2s_stm32_irq_config_func_##index(const struct device *dev);\
\
PINCTRL_DT_INST_DEFINE(index); \
\
static const struct stm32_pclken clk_##index[] = \
STM32_DT_INST_CLOCKS(index); \
\
static const struct i2s_stm32_cfg i2s_stm32_config_##index = { \
.i2s = (SPI_TypeDef *)DT_INST_REG_ADDR(index), \
.pclken = clk_##index, \
.pclk_len = DT_INST_NUM_CLOCKS(index), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
.irq_config = i2s_stm32_irq_config_func_##index, \
.master_clk_sel = DT_INST_PROP(index, mck_enabled) \
}; \
\
struct queue_item rx_##index##_ring_buf[CONFIG_I2S_STM32_RX_BLOCK_COUNT + 1];\
struct queue_item tx_##index##_ring_buf[CONFIG_I2S_STM32_TX_BLOCK_COUNT + 1];\
\
static struct i2s_stm32_data i2s_stm32_data_##index = { \
UTIL_AND(DT_INST_DMAS_HAS_NAME(index, rx), \
I2S_DMA_CHANNEL_INIT(index, rx, RX, PERIPHERAL, MEMORY)),\
UTIL_AND(DT_INST_DMAS_HAS_NAME(index, tx), \
I2S_DMA_CHANNEL_INIT(index, tx, TX, MEMORY, PERIPHERAL)),\
}; \
DEVICE_DT_INST_DEFINE(index, \
&i2s_stm32_initialize, NULL, \
&i2s_stm32_data_##index, \
&i2s_stm32_config_##index, POST_KERNEL, \
CONFIG_I2S_INIT_PRIORITY, &i2s_stm32_driver_api); \
\
static void i2s_stm32_irq_config_func_##index(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(index), \
DT_INST_IRQ(index, priority), \
i2s_stm32_isr, DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_INST_IRQN(index)); \
}
DT_INST_FOREACH_STATUS_OKAY(I2S_STM32_INIT)