zephyr/drivers/i3c/i3c_mcux.c
Ryan McClelland 62f22f8d3b drivers: i3c: i3c attach/detach api
There are some needs to attach and reattach i3c/i2c devices at runtime
Some I2C devices can have special registers where the address can be
changed at runtime. Also some I3C devices can be powered off at runtime
freeing up the address space they take up. These new APIs allow for these
to be changed at runtime. This also moves some config/data in to a common
i3c config/data structure which would allow the api to operate on to be
common for all I3C drivers.

Signed-off-by: Ryan McClelland <ryanmcclelland@meta.com>
2023-03-29 07:46:37 -04:00

2177 lines
55 KiB
C

/*
* Copyright (c) 2016 Freescale Semiconductor, Inc.
* Copyright (c) 2019 NXP
* Copyright (c) 2022 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_mcux_i3c
#include <string.h>
#include <zephyr/device.h>
#include <zephyr/irq.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/i3c.h>
#ifdef CONFIG_PINCTRL
#include <zephyr/drivers/pinctrl.h>
#endif
/*
* This is from NXP HAL which contains register bits macros
* which are used in this driver.
*/
#include <fsl_i3c.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(i3c_mcux, CONFIG_I3C_MCUX_LOG_LEVEL);
#define I3C_MCTRL_REQUEST_NONE I3C_MCTRL_REQUEST(0)
#define I3C_MCTRL_REQUEST_EMIT_START_ADDR I3C_MCTRL_REQUEST(1)
#define I3C_MCTRL_REQUEST_EMIT_STOP I3C_MCTRL_REQUEST(2)
#define I3C_MCTRL_REQUEST_IBI_ACK_NACK I3C_MCTRL_REQUEST(3)
#define I3C_MCTRL_REQUEST_PROCESS_DAA I3C_MCTRL_REQUEST(4)
#define I3C_MCTRL_REQUEST_FORCE_EXIT I3C_MCTRL_REQUEST(6)
#define I3C_MCTRL_REQUEST_AUTO_IBI I3C_MCTRL_REQUEST(7)
#define I3C_MCTRL_IBIRESP_ACK I3C_MCTRL_IBIRESP(0)
#define I3C_MCTRL_IBIRESP_ACK_AUTO I3C_MCTRL_IBIRESP(0)
#define I3C_MCTRL_IBIRESP_NACK I3C_MCTRL_IBIRESP(1)
#define I3C_MCTRL_IBIRESP_ACK_WITH_BYTE I3C_MCTRL_IBIRESP(2)
#define I3C_MCTRL_IBIRESP_MANUAL I3C_MCTRL_IBIRESP(3)
#define I3C_MCTRL_TYPE_I3C I3C_MCTRL_TYPE(0)
#define I3C_MCTRL_TYPE_I2C I3C_MCTRL_TYPE(1)
#define I3C_MCTRL_DIR_WRITE I3C_MCTRL_DIR(0)
#define I3C_MCTRL_DIR_READ I3C_MCTRL_DIR(1)
#define I3C_MSTATUS_STATE_IDLE I3C_MSTATUS_STATE(0)
#define I3C_MSTATUS_STATE_SLVREQ I3C_MSTATUS_STATE(1)
#define I3C_MSTATUS_STATE_MSGSDR I3C_MSTATUS_STATE(2)
#define I3C_MSTATUS_STATE_NORMACT I3C_MSTATUS_STATE(3)
#define I3C_MSTATUS_STATE_MSGDDR I3C_MSTATUS_STATE(4)
#define I3C_MSTATUS_STATE_DAA I3C_MSTATUS_STATE(5)
#define I3C_MSTATUS_STATE_IBIACK I3C_MSTATUS_STATE(6)
#define I3C_MSTATUS_STATE_IBIRCV I3C_MSTATUS_STATE(7)
#define I3C_MSTATUS_IBITYPE_NONE I3C_MSTATUS_IBITYPE(0)
#define I3C_MSTATUS_IBITYPE_IBI I3C_MSTATUS_IBITYPE(1)
#define I3C_MSTATUS_IBITYPE_MR I3C_MSTATUS_IBITYPE(2)
#define I3C_MSTATUS_IBITYPE_HJ I3C_MSTATUS_IBITYPE(3)
struct mcux_i3c_config {
/** Common I3C Driver Config */
struct i3c_driver_config common;
/** Pointer to controller registers. */
I3C_Type *base;
/** Pointer to the clock device. */
const struct device *clock_dev;
/** Clock control subsys related struct. */
clock_control_subsys_t clock_subsys;
#ifdef CONFIG_PINCTRL
/** Pointer to pin control device. */
const struct pinctrl_dev_config *pincfg;
#endif
/** Interrupt configuration function. */
void (*irq_config_func)(const struct device *dev);
};
struct mcux_i3c_data {
/** Common I3C Driver Data */
struct i3c_driver_data common;
/** Configuration parameter to be used with HAL. */
i3c_master_config_t ctrl_config_hal;
/** Semaphore to serialize access for applications. */
struct k_sem lock;
/** Semaphore to serialize access for IBIs. */
struct k_sem ibi_lock;
struct {
/**
* Clock divider for use when generating clock for
* I3C Push-pull mode.
*/
uint8_t clk_div_pp;
/**
* Clock divider for use when generating clock for
* I3C open drain mode.
*/
uint8_t clk_div_od;
/**
* Clock divider for the slow time control clock.
*/
uint8_t clk_div_tc;
/** I3C open drain clock frequency in Hz. */
uint32_t i3c_od_scl_hz;
} clocks;
#ifdef CONFIG_I3C_USE_IBI
struct {
/** List of addresses used in the MIBIRULES register. */
uint8_t addr[5];
/** Number of valid addresses in MIBIRULES. */
uint8_t num_addr;
/** True if all addresses have MSB set. */
bool msb;
/**
* True if all target devices require mandatory byte
* for IBI.
*/
bool has_mandatory_byte;
} ibi;
#endif
};
/**
* @brief Read a register and test for bit matches with timeout.
*
* Please be aware that this uses @see k_busy_wait.
*
* @param reg Pointer to 32-bit Register.
* @param mask Mask to the register value.
* @param match Value to match for masked register value.
* @param init_delay_us Initial delay in microsecond before reading register
* (can be 0).
* @param step_delay_us Delay in microsecond between each read of register
* (cannot be 0).
* @param total_delay_us Total delay in microsecond before bailing out.
*
* @retval 0 If masked register value matches before time out.
* @retval -ETIMEDOUT Exhausted all delays without matching.
*/
static int reg32_poll_timeout(volatile uint32_t *reg,
uint32_t mask, uint32_t match,
uint32_t init_delay_us, uint32_t step_delay_us,
uint32_t total_delay_us)
{
uint32_t delayed = init_delay_us;
int ret = -ETIMEDOUT;
if (init_delay_us > 0U) {
k_busy_wait(init_delay_us);
}
while (delayed <= total_delay_us) {
if ((sys_read32((mm_reg_t)reg) & mask) == match) {
ret = 0;
break;
}
k_busy_wait(step_delay_us);
delayed += step_delay_us;
}
return ret;
}
/**
* @brief Update register value.
*
* @param reg Pointer to 32-bit Register.
* @param mask Mask to the register value.
* @param update Value to be updated in register.
*/
static inline void reg32_update(volatile uint32_t *reg,
uint32_t mask, uint32_t update)
{
uint32_t val = sys_read32((mem_addr_t)reg);
val &= ~mask;
val |= (update & mask);
sys_write32(val, (mem_addr_t)reg);
}
/**
* @brief Test if masked register value has certain value.
*
* @param reg Pointer to 32-bit register.
* @param mask Mask to test.
* @param match Value to match.
*
* @return True if bits in @p mask mask matches @p match, false otherwise.
*/
static inline bool reg32_test_match(volatile uint32_t *reg,
uint32_t mask, uint32_t match)
{
uint32_t val = sys_read32((mem_addr_t)reg);
return (val & mask) == match;
}
/**
* @brief Test if masked register value is the same as the mask.
*
* @param reg Pointer to 32-bit register.
* @param mask Mask to test.
*
* @return True if bits in @p mask are all set, false otherwise.
*/
static inline bool reg32_test(volatile uint32_t *reg, uint32_t mask)
{
return reg32_test_match(reg, mask, mask);
}
/**
* @breif Disable all interrupts.
*
* @param base Pointer to controller registers.
*
* @return Previous enabled interrupts.
*/
static uint32_t mcux_i3c_interrupt_disable(I3C_Type *base)
{
uint32_t intmask = base->MINTSET;
base->MINTCLR = intmask;
return intmask;
}
/**
* @brief Enable interrupts according to mask.
*
* @param base Pointer to controller registers.
* @param mask Interrupts to be enabled.
*
*/
static void mcux_i3c_interrupt_enable(I3C_Type *base, uint32_t mask)
{
base->MINTSET = mask;
}
/**
* @brief Check if there are any errors.
*
* This checks if MSTATUS has ERRWARN bit set.
*
* @retval True if there are any errors.
* @retval False if no errors.
*/
static bool mcux_i3c_has_error(I3C_Type *base)
{
uint32_t mstatus, merrwarn;
mstatus = base->MSTATUS;
if ((mstatus & I3C_MSTATUS_ERRWARN_MASK) == I3C_MSTATUS_ERRWARN_MASK) {
merrwarn = base->MERRWARN;
/*
* Note that this uses LOG_DBG() for displaying
* register values for debugging. In production builds,
* printing any error messages should be handled in
* callers of this function.
*/
LOG_DBG("ERROR: MSTATUS 0x%08x MERRWARN 0x%08x",
mstatus, merrwarn);
return true;
}
return false;
}
/**
* @brief Check if there are any errors, and if one of them is time out error.
*
* @retval True if controller times out on operation.
* @retval False if no time out error.
*/
static inline bool mcux_i3c_error_is_timeout(I3C_Type *base)
{
if (mcux_i3c_has_error(base)) {
if (reg32_test(&base->MERRWARN, I3C_MERRWARN_TIMEOUT_MASK)) {
return true;
}
}
return false;
}
/**
* @brief Check if there are any errors, and if one of them is NACK.
*
* NACK is generated when:
* 1. Target does not ACK the last used address.
* 2. All targets do not ACK on 0x7E.
*
* @retval True if NACK is received.
* @retval False if no NACK error.
*/
static inline bool mcux_i3c_error_is_nack(I3C_Type *base)
{
if (mcux_i3c_has_error(base)) {
if (reg32_test(&base->MERRWARN, I3C_MERRWARN_NACK_MASK)) {
return true;
}
}
return false;
}
/**
* @brief Test if certain bits are set in MSTATUS.
*
* @param base Pointer to controller registers.
* @param mask Bits to be tested.
*
* @retval True if @p mask bits are set.
* @retval False if @p mask bits are not set.
*/
static inline bool mcux_i3c_status_is_set(I3C_Type *base, uint32_t mask)
{
return reg32_test(&base->MSTATUS, mask);
}
/**
* @brief Spin wait for MSTATUS bit to be set.
*
* This spins forever for the bits to be set.
*
* @param base Pointer to controller registers.
* @param mask Bits to be tested.
*/
static inline void mcux_i3c_status_wait(I3C_Type *base, uint32_t mask)
{
/* Wait for bits to be set */
while (!mcux_i3c_status_is_set(base, mask)) {
k_busy_wait(1);
};
}
/**
* @brief Wait for MSTATUS bits to be set with time out.
*
* @param base Pointer to controller registers.
* @param mask Bits to be tested.
* @param init_delay_us Initial delay in microsecond before reading register
* (can be 0).
* @param step_delay_us Delay in microsecond between each read of register
* (cannot be 0).
* @param total_delay_us Total delay in microsecond before bailing out.
*
* @retval 0 If bits are set before time out.
* @retval -ETIMEDOUT Exhausted all delays.
*/
static inline int mcux_i3c_status_wait_timeout(I3C_Type *base, uint32_t mask,
uint32_t init_delay_us,
uint32_t step_delay_us,
uint32_t total_delay_us)
{
return reg32_poll_timeout(&base->MSTATUS, mask, mask,
init_delay_us, step_delay_us, total_delay_us);
}
/**
* @brief Clear the MSTATUS bits and wait for them to be cleared.
*
* This spins forever for the bits to be cleared;
*
* @param base Pointer to controller registers.
* @param mask Bits to be cleared.
*/
static inline void mcux_i3c_status_clear(I3C_Type *base, uint32_t mask)
{
/* Try to clear bit until it is cleared */
while (1) {
base->MSTATUS = mask;
if (!mcux_i3c_status_is_set(base, mask)) {
break;
}
k_busy_wait(1);
}
}
/**
* @brief Clear transfer and IBI related bits in MSTATUS.
*
* This spins forever for those bits to be cleared;
*
* @see I3C_MSTATUS_SLVSTART_MASK
* @see I3C_MSTATUS_MCTRLDONE_MASK
* @see I3C_MSTATUS_COMPLETE_MASK
* @see I3C_MSTATUS_IBIWON_MASK
* @see I3C_MSTATUS_ERRWARN_MASK
*
* @param base Pointer to controller registers.
*/
static inline void mcux_i3c_status_clear_all(I3C_Type *base)
{
uint32_t mask = I3C_MSTATUS_SLVSTART_MASK |
I3C_MSTATUS_MCTRLDONE_MASK |
I3C_MSTATUS_COMPLETE_MASK |
I3C_MSTATUS_IBIWON_MASK |
I3C_MSTATUS_ERRWARN_MASK;
mcux_i3c_status_clear(base, mask);
}
/**
* @brief Clear the MSTATUS bits and wait for them to be cleared with time out.
*
* @param base Pointer to controller registers.
* @param mask Bits to be cleared.
* @param init_delay_us Initial delay in microsecond before reading register
* (can be 0).
* @param step_delay_us Delay in microsecond between each read of register
* (cannot be 0).
* @param total_delay_us Total delay in microsecond before bailing out.
*
* @retval 0 If bits are cleared before time out.
* @retval -ETIMEDOUT Exhausted all delays.
*/
static inline int mcux_i3c_status_clear_timeout(I3C_Type *base, uint32_t mask,
uint32_t init_delay_us,
uint32_t step_delay_us,
uint32_t total_delay_us)
{
uint32_t delayed = init_delay_us;
int ret = -ETIMEDOUT;
/* Try to clear bit until it is cleared */
while (delayed <= total_delay_us) {
base->MSTATUS = mask;
if (!mcux_i3c_status_is_set(base, mask)) {
ret = 0;
break;
}
k_busy_wait(step_delay_us);
delayed += step_delay_us;
}
return ret;
}
/**
* @brief Spin wait for MSTATUS bit to be set, and clear it afterwards.
*
* Note that this spins forever waiting for bits to be set, and
* to be cleared.
*
* @see mcux_i3c_status_wait
* @see mcux_i3c_status_clear
*
* @param base Pointer to controller registers.
* @param mask Bits to be set and to be cleared;
*/
static inline void mcux_i3c_status_wait_clear(I3C_Type *base, uint32_t mask)
{
mcux_i3c_status_wait(base, mask);
mcux_i3c_status_clear(base, mask);
}
/**
* @brief Wait for MSTATUS bit to be set, and clear it afterwards, with time out.
*
* @see mcux_i3c_status_wait_timeout
* @see mcux_i3c_status_clear_timeout
*
* @param base Pointer to controller registers.
* @param mask Bits to be set and to be cleared.
* @param init_delay_us Initial delay in microsecond before reading register
* (can be 0).
* @param step_delay_us Delay in microsecond between each read of register
* (cannot be 0).
* @param total_delay_us Total delay in microsecond before bailing out.
*
* @retval 0 If masked register value matches before time out.
* @retval -ETIMEDOUT Exhausted all delays without matching.
*/
static inline int mcux_i3c_status_wait_clear_timeout(I3C_Type *base, uint32_t mask,
uint32_t init_delay_us,
uint32_t step_delay_us,
uint32_t total_delay_us)
{
int ret;
ret = mcux_i3c_status_wait_timeout(base, mask, init_delay_us,
step_delay_us, total_delay_us);
if (ret != 0) {
goto out;
}
ret = mcux_i3c_status_clear_timeout(base, mask, init_delay_us,
step_delay_us, total_delay_us);
out:
return ret;
}
/**
* @brief Clear the MERRWARN register.
*
* @param base Pointer to controller registers.
*/
static inline void mcux_i3c_errwarn_clear_all_nowait(I3C_Type *base)
{
base->MERRWARN = base->MERRWARN;
}
/**
* @brief Tell controller to start DAA process.
*
* @param base Pointer to controller registers.
*/
static inline void mcux_i3c_request_daa(I3C_Type *base)
{
reg32_update(&base->MCTRL,
I3C_MCTRL_REQUEST_MASK | I3C_MCTRL_IBIRESP_MASK | I3C_MCTRL_RDTERM_MASK,
I3C_MCTRL_REQUEST_PROCESS_DAA | I3C_MCTRL_IBIRESP_NACK);
}
/**
* @brief Tell controller to start auto IBI.
*
* This also waits for the controller to indicate auto IBI
* has started before returning.
*
* @param base Pointer to controller registers.
*/
static inline void mcux_i3c_request_auto_ibi(I3C_Type *base)
{
reg32_update(&base->MCTRL,
I3C_MCTRL_REQUEST_MASK | I3C_MCTRL_IBIRESP_MASK | I3C_MCTRL_RDTERM_MASK,
I3C_MCTRL_REQUEST_AUTO_IBI | I3C_MCTRL_IBIRESP_ACK_AUTO);
mcux_i3c_status_wait_clear(base, I3C_MSTATUS_MCTRLDONE_MASK);
}
/**
* @brief Get the controller state.
*
* @param base Pointer to controller registers.
*
* @retval I3C_MSTATUS_STATE_IDLE
* @retval I3C_MSTATUS_STATE_SLVREQ
* @retval I3C_MSTATUS_STATE_MSGSDR
* @retval I3C_MSTATUS_STATE_NORMACT
* @retval I3C_MSTATUS_STATE_MSGDDR
* @retval I3C_MSTATUS_STATE_DAA
* @retval I3C_MSTATUS_STATE_IBIACK
* @retval I3C_MSTATUS_STATE_IBIRCV
*/
static inline uint32_t mcux_i3c_state_get(I3C_Type *base)
{
uint32_t mstatus = base->MSTATUS;
uint32_t state;
/* Make sure we are in a state where we can emit STOP */
state = (mstatus & I3C_MSTATUS_STATE_MASK) >> I3C_MSTATUS_STATE_SHIFT;
return state;
}
/**
* @brief Wait for MSTATUS bit to be set, and clear it afterwards with time out.
*
* @param base Pointer to controller registers.
* @param mask Bits to be set.
* @param init_delay_us Initial delay in microsecond before reading register
* (can be 0).
* @param step_delay_us Delay in microsecond between each read of register
* (cannot be 0).
* @param total_delay_us Total delay in microsecond before bailing out.
*
* @retval 0 If masked register value matches before time out.
* @retval -ETIMEDOUT Exhausted all delays without matching.
*/
static inline int mcux_i3c_state_wait_timeout(I3C_Type *base, uint32_t state,
uint32_t init_delay_us,
uint32_t step_delay_us,
uint32_t total_delay_us)
{
uint32_t delayed = init_delay_us;
int ret = -ETIMEDOUT;
/* Try to clear bit until it is cleared */
while (delayed <= total_delay_us) {
if (mcux_i3c_state_get(base) == state) {
ret = 0;
break;
}
k_busy_wait(step_delay_us);
delayed += step_delay_us;
}
return ret;
}
/**
* @brief Tell controller to emit START.
*
* @param base Pointer to controller registers.
* @param addr Target address.
* @param is_i2c True if this is I2C transactions, false if I3C.
* @param is_read True if this is a read transaction, false if write.
* @param read_sz Number of bytes to read if @p is_read is true.
*
* @return 0 if successful, or negative if error.
*/
static int mcux_i3c_request_emit_start(I3C_Type *base, uint8_t addr, bool is_i2c,
bool is_read, size_t read_sz)
{
uint32_t mctrl;
int ret = 0;
mctrl = is_i2c ? I3C_MCTRL_TYPE_I2C : I3C_MCTRL_TYPE_I3C;
mctrl |= I3C_MCTRL_IBIRESP_NACK;
if (is_read) {
mctrl |= I3C_MCTRL_DIR_READ;
/* How many bytes to read */
mctrl |= I3C_MCTRL_RDTERM(read_sz);
} else {
mctrl |= I3C_MCTRL_DIR_WRITE;
}
mctrl |= I3C_MCTRL_REQUEST_EMIT_START_ADDR | I3C_MCTRL_ADDR(addr);
base->MCTRL = mctrl;
/* Wait for controller to say the operation is done */
ret = mcux_i3c_status_wait_clear_timeout(base, I3C_MSTATUS_MCTRLDONE_MASK,
0, 10, 1000);
if (ret == 0) {
/* Check for NACK */
if (mcux_i3c_error_is_nack(base)) {
ret = -ENODEV;
}
}
return ret;
}
/**
* @brief Tell controller to emit STOP.
*
* This emits STOP when controller is in NORMACT state as this is
* the only valid state where STOP can be emitted. This also waits
* for the controller to get out of NORMACT before returning.
*
* @param base Pointer to controller registers.
* @param wait_stop True if need to wait for controller to be
* no longer in NORMACT.
*/
static inline void mcux_i3c_request_emit_stop(I3C_Type *base, bool wait_stop)
{
/* Make sure we are in a state where we can emit STOP */
if (mcux_i3c_state_get(base) != I3C_MSTATUS_STATE_NORMACT) {
return;
}
reg32_update(&base->MCTRL,
I3C_MCTRL_REQUEST_MASK | I3C_MCTRL_DIR_MASK | I3C_MCTRL_RDTERM_MASK,
I3C_MCTRL_REQUEST_EMIT_STOP);
mcux_i3c_status_wait_clear(base, I3C_MSTATUS_MCTRLDONE_MASK);
if (wait_stop) {
/*
* Note that we don't exactly wait for I3C_MSTATUS_STATE_IDLE.
* If there is an incoming IBI, it will get stuck forever
* as state would be I3C_MSTATUS_STATE_SLVREQ.
*/
while (reg32_test_match(&base->MSTATUS, I3C_MSTATUS_STATE_MASK,
I3C_MSTATUS_STATE_NORMACT)) {
if (mcux_i3c_has_error(base)) {
/*
* Bail out if there is any error so
* we won't loop forever.
*/
return;
}
k_busy_wait(10);
};
}
}
/**
* @brief Tell controller to NACK the incoming IBI.
*
* @param base Pointer to controller registers.
*/
static inline void mcux_i3c_ibi_respond_nack(I3C_Type *base)
{
reg32_update(&base->MCTRL,
I3C_MCTRL_REQUEST_MASK | I3C_MCTRL_IBIRESP_MASK,
I3C_MCTRL_REQUEST_IBI_ACK_NACK | I3C_MCTRL_IBIRESP_NACK);
mcux_i3c_status_wait_clear(base, I3C_MSTATUS_MCTRLDONE_MASK);
}
/**
* @brief Tell controller to ACK the incoming IBI.
*
* @param base Pointer to controller registers.
*/
static inline void mcux_i3c_ibi_respond_ack(I3C_Type *base)
{
reg32_update(&base->MCTRL,
I3C_MCTRL_REQUEST_MASK | I3C_MCTRL_IBIRESP_MASK,
I3C_MCTRL_REQUEST_IBI_ACK_NACK | I3C_MCTRL_IBIRESP_ACK_AUTO);
mcux_i3c_status_wait_clear(base, I3C_MSTATUS_MCTRLDONE_MASK);
}
/**
* @brief Get the number of bytes in RX FIFO.
*
* This returns the number of bytes in RX FIFO which
* can be read.
*
* @param base Pointer to controller registers.
*
* @return Number of bytes in RX FIFO.
*/
static inline int mcux_i3c_fifo_rx_count_get(I3C_Type *base)
{
uint32_t mdatactrl = base->MDATACTRL;
return (int)((mdatactrl & I3C_MDATACTRL_RXCOUNT_MASK) >> I3C_MDATACTRL_RXCOUNT_SHIFT);
}
/**
* @brief Tell controller to flush both TX and RX FIFOs.
*
* @param base Pointer to controller registers.
*/
static inline void mcux_i3c_fifo_flush(I3C_Type *base)
{
base->MDATACTRL = I3C_MDATACTRL_FLUSHFB_MASK | I3C_MDATACTRL_FLUSHTB_MASK;
}
/**
* @brief Prepare the controller for transfers.
*
* This is simply a wrapper to clear out status bits,
* and error bits. Also this tells the controller to
* flush both TX and RX FIFOs.
*
* @param base Pointer to controller registers.
*/
static inline void mcux_i3c_xfer_reset(I3C_Type *base)
{
mcux_i3c_status_clear_all(base);
mcux_i3c_errwarn_clear_all_nowait(base);
mcux_i3c_fifo_flush(base);
}
/**
* @brief Drain RX FIFO.
*
* @param dev Pointer to controller device driver instance.
*/
static void mcux_i3c_fifo_rx_drain(const struct device *dev)
{
const struct mcux_i3c_config *config = dev->config;
I3C_Type *base = config->base;
uint8_t buf;
/* Read from FIFO as long as RXPEND is set. */
while (mcux_i3c_status_is_set(base, I3C_MSTATUS_RXPEND_MASK)) {
buf = base->MRDATAB;
}
}
/**
* @brief Find a registered I3C target device.
*
* This returns the I3C device descriptor of the I3C device
* matching the incoming @p id.
*
* @param dev Pointer to controller device driver instance.
* @param id Pointer to I3C device ID.
*
* @return @see i3c_device_find.
*/
static
struct i3c_device_desc *mcux_i3c_device_find(const struct device *dev,
const struct i3c_device_id *id)
{
const struct mcux_i3c_config *config = dev->config;
return i3c_dev_list_find(&config->common.dev_list, id);
}
/**
* Find a registered I2C target device.
*
* Controller only API.
*
* This returns the I2C device descriptor of the I2C device
* matching the device address @p addr.
*
* @param dev Pointer to controller device driver instance.
* @param id I2C target device address.
*
* @return @see i3c_i2c_device_find.
*/
static struct i3c_i2c_device_desc *
mcux_i3c_i2c_device_find(const struct device *dev, uint16_t addr)
{
struct cdns_i3c_data *data = dev->data;
return i3c_dev_list_i2c_addr_find(&data->common.attached_dev, addr);
}
/**
* @brief Perform bus recovery.
*
* @param dev Pointer to controller device driver instance.
*/
static int mcux_i3c_recover_bus(const struct device *dev)
{
const struct mcux_i3c_config *config = dev->config;
I3C_Type *base = config->base;
int ret = 0;
/*
* If the controller is in NORMACT state, tells it to emit STOP
* so it can return to IDLE, or is ready to clear any pending
* target initiated IBIs.
*/
if (mcux_i3c_state_get(base) == I3C_MSTATUS_STATE_NORMACT) {
mcux_i3c_request_emit_stop(base, true);
};
/* Exhaust all target initiated IBI */
while (mcux_i3c_status_is_set(base, I3C_MSTATUS_SLVSTART_MASK)) {
/* Tell the controller to perform auto IBI. */
mcux_i3c_request_auto_ibi(base);
if (mcux_i3c_status_wait_clear_timeout(base, I3C_MSTATUS_COMPLETE_MASK,
0, 10, 1000) == -ETIMEDOUT) {
break;
}
/* Once auto IBI is done, discard bytes in FIFO. */
mcux_i3c_fifo_rx_drain(dev);
/*
* There might be other IBIs waiting.
* So pause a bit to let other targets initiates
* their IBIs.
*/
k_busy_wait(100);
}
if (reg32_poll_timeout(&base->MSTATUS, I3C_MSTATUS_STATE_MASK,
I3C_MSTATUS_STATE_IDLE, 0, 10, 1000) == -ETIMEDOUT) {
ret = -EBUSY;
}
return ret;
}
/**
* @brief Perform one read transaction.
*
* This reads from RX FIFO until COMPLETE bit is set in MSTATUS
* or time out.
*
* @param base Pointer to controller registers.
* @param buf Buffer to store data.
* @param buf_sz Buffer size in bytes.
*
* @return Number of bytes read, or negative if error.
*/
static int mcux_i3c_do_one_xfer_read(I3C_Type *base, uint8_t *buf, uint8_t buf_sz)
{
int rx_count;
bool completed = false;
bool overflow = false;
int ret = 0;
int offset = 0;
while (!completed) {
/*
* Test if the COMPLETE bit is set.
*/
if (mcux_i3c_status_is_set(base, I3C_MSTATUS_COMPLETE_MASK)) {
completed = true;
}
/*
* If controller says timed out, we abort the transaction.
*/
if (mcux_i3c_has_error(base)) {
if (mcux_i3c_error_is_timeout(base)) {
ret = -ETIMEDOUT;
}
base->MERRWARN = base->MERRWARN;
goto one_xfer_read_out;
}
/*
* Transfer data from FIFO into buffer.
*/
rx_count = mcux_i3c_fifo_rx_count_get(base);
while (rx_count > 0) {
uint8_t data = (uint8_t)base->MRDATAB;
if (offset < buf_sz) {
buf[offset] = data;
offset += 1;
} else {
overflow = true;
}
rx_count -= 1;
}
}
if (overflow) {
ret = -EINVAL;
} else {
ret = offset;
}
one_xfer_read_out:
return ret;
}
/**
* @brief Perform one write transaction.
*
* This writes all data in @p buf to TX FIFO or time out
* waiting for FIFO spaces.
*
* @param base Pointer to controller registers.
* @param buf Buffer containing data to be sent.
* @param buf_sz Number of bytes in @p buf to send.
* @param no_ending True if not to signal end of write message.
*
* @return Number of bytes written, or negative if error.
*/
static int mcux_i3c_do_one_xfer_write(I3C_Type *base, uint8_t *buf, uint8_t buf_sz, bool no_ending)
{
int offset = 0;
int remaining = buf_sz;
int ret = 0;
while (remaining > 0) {
ret = reg32_poll_timeout(&base->MDATACTRL, I3C_MDATACTRL_TXFULL_MASK, 0,
0, 10, 1000);
if (ret == -ETIMEDOUT) {
goto one_xfer_write_out;
}
if ((remaining > 1) || no_ending) {
base->MWDATAB = (uint32_t)buf[offset];
} else {
base->MWDATABE = (uint32_t)buf[offset];
}
offset += 1;
remaining -= 1;
}
ret = offset;
one_xfer_write_out:
return ret;
}
/**
* @brief Perform one transfer transaction.
*
* @param base Pointer to controller registers.
* @param data Pointer to controller device instance data.
* @param addr Target address.
* @param is_i2c True if this is I2C transactions, false if I3C.
* @param buf Buffer for data to be sent or received.
* @param buf_sz Buffer size in bytes.
* @param is_read True if this is a read transaction, false if write.
* @param emit_start True if START is needed before read/write.
* @param emit_stop True if STOP is needed after read/write.
* @param no_ending True if not to signal end of write message.
*
* @return Number of bytes read/written, or negative if error.
*/
static int mcux_i3c_do_one_xfer(I3C_Type *base, struct mcux_i3c_data *data,
uint8_t addr, bool is_i2c,
uint8_t *buf, size_t buf_sz,
bool is_read, bool emit_start, bool emit_stop,
bool no_ending)
{
int ret = 0;
mcux_i3c_status_clear_all(base);
mcux_i3c_errwarn_clear_all_nowait(base);
/* Emit START if so desired */
if (emit_start) {
ret = mcux_i3c_request_emit_start(base, addr, is_i2c, is_read, buf_sz);
if (ret != 0) {
emit_stop = true;
goto out_one_xfer;
}
}
if (buf == NULL) {
goto out_one_xfer;
}
if (is_read) {
ret = mcux_i3c_do_one_xfer_read(base, buf, buf_sz);
} else {
ret = mcux_i3c_do_one_xfer_write(base, buf, buf_sz, no_ending);
}
if (is_read || !no_ending) {
/* Wait for controller to say the operation is done */
ret = mcux_i3c_status_wait_clear_timeout(base, I3C_MSTATUS_COMPLETE_MASK,
0, 10, 1000);
if (ret != 0) {
emit_stop = true;
goto out_one_xfer;
}
}
if (mcux_i3c_has_error(base)) {
ret = -EIO;
}
out_one_xfer:
if (emit_stop) {
mcux_i3c_request_emit_stop(base, true);
}
return ret;
}
/**
* @brief Transfer messages in I3C mode.
*
* @see i3c_transfer
*
* @param dev Pointer to device driver instance.
* @param target Pointer to target device descriptor.
* @param msgs Pointer to I3C messages.
* @param num_msgs Number of messages to transfers.
*
* @return @see i3c_transfer
*/
static int mcux_i3c_transfer(const struct device *dev,
struct i3c_device_desc *target,
struct i3c_msg *msgs,
uint8_t num_msgs)
{
const struct mcux_i3c_config *config = dev->config;
struct mcux_i3c_data *dev_data = dev->data;
I3C_Type *base = config->base;
uint32_t intmask;
int ret;
if (target->dynamic_addr == 0U) {
ret = -EINVAL;
goto out_xfer_i3c;
}
k_sem_take(&dev_data->lock, K_FOREVER);
intmask = mcux_i3c_interrupt_disable(base);
ret = mcux_i3c_state_wait_timeout(base, I3C_MSTATUS_STATE_IDLE, 0, 100, 100000);
if (ret == -ETIMEDOUT) {
goto out_xfer_i3c_unlock;
}
mcux_i3c_xfer_reset(base);
/* Iterate over all the messages */
for (int i = 0; i < num_msgs; i++) {
bool is_read = (msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ;
bool no_ending = false;
/*
* Emit start if this is the first message or that
* the RESTART flag is set in message.
*/
bool emit_start = (i == 0) ||
((msgs[i].flags & I3C_MSG_RESTART) == I3C_MSG_RESTART);
bool emit_stop = (msgs[i].flags & I3C_MSG_STOP) == I3C_MSG_STOP;
/*
* The controller requires special treatment of last byte of
* a write message. Since the API permits having a bunch of
* write messages without RESTART in between, this is just some
* logic to determine whether to treat the last byte of this
* message to be the last byte of a series of write mssages.
* If not, tell the write function not to treat it that way.
*/
if (!is_read && !emit_stop && ((i + 1) != num_msgs)) {
bool next_is_write =
(msgs[i + 1].flags & I3C_MSG_RW_MASK) == I3C_MSG_WRITE;
bool next_is_restart =
((msgs[i + 1].flags & I3C_MSG_RESTART) == I3C_MSG_RESTART);
if (next_is_write && !next_is_restart) {
no_ending = true;
}
}
ret = mcux_i3c_do_one_xfer(base, dev_data, target->dynamic_addr, false,
msgs[i].buf, msgs[i].len,
is_read, emit_start, emit_stop, no_ending);
if (ret < 0) {
goto out_xfer_i3c_stop_unlock;
}
}
ret = 0;
out_xfer_i3c_stop_unlock:
mcux_i3c_request_emit_stop(base, true);
out_xfer_i3c_unlock:
mcux_i3c_errwarn_clear_all_nowait(base);
mcux_i3c_status_clear_all(base);
mcux_i3c_interrupt_enable(base, intmask);
k_sem_give(&dev_data->lock);
out_xfer_i3c:
return ret;
}
/**
* @brief Transfer messages in I2C mode.
*
* @see i3c_i2c_transfer
*
* @param dev Pointer to device driver instance.
* @param target Pointer to target device descriptor.
* @param msgs Pointer to I2C messages.
* @param num_msgs Number of messages to transfers.
*
* @return @see i3c_i2c_transfer
*/
static int mcux_i3c_i2c_transfer(const struct device *dev,
struct i3c_i2c_device_desc *i2c_dev,
struct i2c_msg *msgs,
uint8_t num_msgs)
{
const struct mcux_i3c_config *config = dev->config;
struct mcux_i3c_data *dev_data = dev->data;
I3C_Type *base = config->base;
uint32_t intmask;
int ret;
k_sem_take(&dev_data->lock, K_FOREVER);
intmask = mcux_i3c_interrupt_disable(base);
ret = mcux_i3c_state_wait_timeout(base, I3C_MSTATUS_STATE_IDLE, 0, 100, 100000);
if (ret == -ETIMEDOUT) {
goto out_xfer_i2c_unlock;
}
mcux_i3c_xfer_reset(base);
/* Iterate over all the messages */
for (int i = 0; i < num_msgs; i++) {
bool is_read = (msgs[i].flags & I2C_MSG_RW_MASK) == I2C_MSG_READ;
bool no_ending = false;
/*
* Emit start if this is the first message or that
* the RESTART flag is set in message.
*/
bool emit_start = (i == 0) ||
((msgs[i].flags & I2C_MSG_RESTART) == I2C_MSG_RESTART);
bool emit_stop = (msgs[i].flags & I2C_MSG_STOP) == I2C_MSG_STOP;
/*
* The controller requires special treatment of last byte of
* a write message. Since the API permits having a bunch of
* write messages without RESTART in between, this is just some
* logic to determine whether to treat the last byte of this
* message to be the last byte of a series of write mssages.
* If not, tell the write function not to treat it that way.
*/
if (!is_read && !emit_stop && ((i + 1) != num_msgs)) {
bool next_is_write =
(msgs[i + 1].flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE;
bool next_is_restart =
((msgs[i + 1].flags & I2C_MSG_RESTART) == I2C_MSG_RESTART);
if (next_is_write && !next_is_restart) {
no_ending = true;
}
}
ret = mcux_i3c_do_one_xfer(base, dev_data, i2c_dev->addr, true,
msgs[i].buf, msgs[i].len,
is_read, emit_start, emit_stop, no_ending);
if (ret < 0) {
goto out_xfer_i2c_stop_unlock;
}
}
ret = 0;
out_xfer_i2c_stop_unlock:
mcux_i3c_request_emit_stop(base, true);
out_xfer_i2c_unlock:
mcux_i3c_errwarn_clear_all_nowait(base);
mcux_i3c_status_clear_all(base);
mcux_i3c_interrupt_enable(base, intmask);
k_sem_give(&dev_data->lock);
return ret;
}
/**
* @brief Perform Dynamic Address Assignment.
*
* @see i3c_do_daa
*
* @param dev Pointer to controller device driver instance.
*
* @return @see i3c_do_daa
*/
static int mcux_i3c_do_daa(const struct device *dev)
{
const struct mcux_i3c_config *config = dev->config;
struct mcux_i3c_data *data = dev->data;
I3C_Type *base = config->base;
int ret = 0;
uint8_t rx_buf[8] = {0xFFU, 0xFFU, 0xFFU, 0xFFU, 0xFFU, 0xFFU, 0xFFU, 0xFFU};
size_t rx_count;
uint8_t rx_size = 0;
uint32_t intmask;
k_sem_take(&data->lock, K_FOREVER);
ret = mcux_i3c_state_wait_timeout(base, I3C_MSTATUS_STATE_IDLE, 0, 100, 100000);
if (ret == -ETIMEDOUT) {
goto out_daa_unlock;
}
LOG_DBG("DAA: ENTDAA");
/* Disable I3C IRQ sources while we configure stuff. */
intmask = mcux_i3c_interrupt_disable(base);
mcux_i3c_xfer_reset(base);
/* Emit process DAA */
mcux_i3c_request_daa(base);
/* Loop until no more responses from devices */
do {
/* Loop to grab data from devices (Provisioned ID, BCR and DCR) */
do {
if (mcux_i3c_has_error(base)) {
LOG_ERR("DAA recv error");
ret = -EIO;
goto out_daa;
}
rx_count = mcux_i3c_fifo_rx_count_get(base);
while (mcux_i3c_status_is_set(base, I3C_MSTATUS_RXPEND_MASK) &&
(rx_count != 0U)) {
rx_buf[rx_size] = (uint8_t)(base->MRDATAB &
I3C_MRDATAB_VALUE_MASK);
rx_size++;
rx_count--;
}
} while (!mcux_i3c_status_is_set(base, I3C_MSTATUS_MCTRLDONE_MASK));
mcux_i3c_status_clear(base, I3C_MSTATUS_MCTRLDONE_MASK);
/* Figure out what address to assign to device */
if ((mcux_i3c_state_get(base) == I3C_MSTATUS_STATE_DAA) &&
(mcux_i3c_status_is_set(base, I3C_MSTATUS_BETWEEN_MASK))) {
struct i3c_device_desc *target;
uint16_t vendor_id;
uint32_t part_no;
uint64_t pid;
uint8_t dyn_addr;
rx_size = 0;
/* Vendor ID portion of Provisioned ID */
vendor_id = (((uint16_t)rx_buf[0] << 8U) | (uint16_t)rx_buf[1]) &
0xFFFEU;
/* Part Number portion of Provisioned ID */
part_no = (uint32_t)rx_buf[2] << 24U | (uint32_t)rx_buf[3] << 16U |
(uint32_t)rx_buf[4] << 8U | (uint32_t)rx_buf[5];
/* ... and combine into one Provisioned ID */
pid = (uint64_t)vendor_id << 32U | (uint64_t)part_no;
LOG_DBG("DAA: Rcvd PID 0x%04x%08x", vendor_id, part_no);
ret = i3c_dev_list_daa_addr_helper(&data->common.attached_dev.addr_slots,
&config->common.dev_list, pid,
false, false,
&target, &dyn_addr);
if (ret != 0) {
goto out_daa;
}
/* Update target descriptor */
target->dynamic_addr = dyn_addr;
target->bcr = rx_buf[6];
target->dcr = rx_buf[7];
/* Mark the address as I3C device */
i3c_addr_slots_mark_i3c(&data->common.attached_dev.addr_slots, dyn_addr);
/*
* If the device has static address, after address assignment,
* the device will not respond to the static address anymore.
* So free the static one from address slots if different from
* newly assigned one.
*/
if ((target->static_addr != 0U) && (dyn_addr != target->static_addr)) {
i3c_addr_slots_mark_free(&data->common.attached_dev.addr_slots,
dyn_addr);
}
/* Emit process DAA again to send the address to the device */
base->MWDATAB = dyn_addr;
mcux_i3c_request_daa(base);
LOG_DBG("PID 0x%04x%08x assigned dynamic address 0x%02x",
vendor_id, part_no, dyn_addr);
}
} while (!mcux_i3c_status_is_set(base, I3C_MSTATUS_COMPLETE_MASK));
out_daa:
/* Clear all flags. */
mcux_i3c_errwarn_clear_all_nowait(base);
mcux_i3c_status_clear_all(base);
/* Re-Enable I3C IRQ sources. */
mcux_i3c_interrupt_enable(base, intmask);
out_daa_unlock:
k_sem_give(&data->lock);
return ret;
return -EIO;
}
/**
* @brief Send Common Command Code (CCC).
*
* @see i3c_do_ccc
*
* @param dev Pointer to controller device driver instance.
* @param payload Pointer to CCC payload.
*
* @return @see i3c_do_ccc
*/
static int mcux_i3c_do_ccc(const struct device *dev,
struct i3c_ccc_payload *payload)
{
const struct mcux_i3c_config *config = dev->config;
struct mcux_i3c_data *data = dev->data;
I3C_Type *base = config->base;
int ret = 0;
uint32_t intmask;
if (payload == NULL) {
return -EINVAL;
}
k_sem_take(&data->lock, K_FOREVER);
intmask = mcux_i3c_interrupt_disable(base);
mcux_i3c_xfer_reset(base);
LOG_DBG("CCC[0x%02x]", payload->ccc.id);
/* Emit START */
ret = mcux_i3c_request_emit_start(base, I3C_BROADCAST_ADDR, false, false, 0);
if (ret < 0) {
LOG_ERR("CCC[0x%02x] %s START error (%d)",
payload->ccc.id,
i3c_ccc_is_payload_broadcast(payload) ? "broadcast" : "direct",
ret);
goto out_ccc_stop;
}
/* Write the CCC code */
mcux_i3c_status_clear_all(base);
mcux_i3c_errwarn_clear_all_nowait(base);
ret = mcux_i3c_do_one_xfer_write(base, &payload->ccc.id, 1,
payload->ccc.data_len > 0);
if (ret < 0) {
LOG_ERR("CCC[0x%02x] %s command error (%d)",
payload->ccc.id,
i3c_ccc_is_payload_broadcast(payload) ? "broadcast" : "direct",
ret);
goto out_ccc_stop;
}
/* Write additional data for CCC if needed */
if (payload->ccc.data_len > 0) {
mcux_i3c_status_clear_all(base);
mcux_i3c_errwarn_clear_all_nowait(base);
ret = mcux_i3c_do_one_xfer_write(base, payload->ccc.data,
payload->ccc.data_len, false);
if (ret < 0) {
LOG_ERR("CCC[0x%02x] %s command payload error (%d)",
payload->ccc.id,
i3c_ccc_is_payload_broadcast(payload) ? "broadcast" : "direct",
ret);
goto out_ccc_stop;
}
}
/* Wait for controller to say the operation is done */
ret = mcux_i3c_status_wait_clear_timeout(base, I3C_MSTATUS_COMPLETE_MASK, 0, 10, 1000);
if (ret != 0) {
goto out_ccc_stop;
}
if (!i3c_ccc_is_payload_broadcast(payload)) {
/*
* If there are payload(s) for each target,
* RESTART and then send payload for each target.
*/
for (int idx = 0; idx < payload->targets.num_targets; idx++) {
struct i3c_ccc_target_payload *tgt_payload =
&payload->targets.payloads[idx];
bool is_read = tgt_payload->rnw == 1U;
bool emit_start = idx == 0;
ret = mcux_i3c_do_one_xfer(base, data,
tgt_payload->addr, false,
tgt_payload->data,
tgt_payload->data_len,
is_read, emit_start, false, false);
if (ret < 0) {
LOG_ERR("CCC[0x%02x] target payload error (%d)",
payload->ccc.id, ret);
goto out_ccc_stop;
}
}
}
out_ccc_stop:
mcux_i3c_request_emit_stop(base, true);
if (ret > 0) {
ret = 0;
}
mcux_i3c_interrupt_enable(base, intmask);
k_sem_give(&data->lock);
return ret;
}
#ifdef CONFIG_I3C_USE_IBI
/**
* @brief Callback to service target initiated IBIs.
*
* @param work Pointer to k_work item.
*/
static void mcux_i3c_ibi_work(struct k_work *work)
{
uint8_t payload[CONFIG_I3C_IBI_MAX_PAYLOAD_SIZE];
size_t payload_sz = 0;
struct i3c_ibi_work *i3c_ibi_work = CONTAINER_OF(work, struct i3c_ibi_work, work);
const struct device *dev = i3c_ibi_work->controller;
const struct mcux_i3c_config *config = dev->config;
struct mcux_i3c_data *data = dev->data;
struct i3c_dev_attached_list *dev_list = &data->common.attached_dev;
I3C_Type *base = config->base;
struct i3c_device_desc *target = NULL;
uint32_t mstatus, ibitype, ibiaddr;
int ret;
k_sem_take(&data->ibi_lock, K_FOREVER);
if (mcux_i3c_state_get(base) != I3C_MSTATUS_STATE_SLVREQ) {
LOG_DBG("IBI work %p running not because of IBI", work);
LOG_DBG("MSTATUS 0x%08x MERRWARN 0x%08x",
base->MSTATUS, base->MERRWARN);
mcux_i3c_request_emit_stop(base, true);
goto out_ibi_work;
};
/* Use auto IBI to service the IBI */
mcux_i3c_request_auto_ibi(base);
mstatus = sys_read32((mem_addr_t)&base->MSTATUS);
ibiaddr = (mstatus & I3C_MSTATUS_IBIADDR_MASK) >> I3C_MSTATUS_IBIADDR_SHIFT;
/*
* Note that the I3C_MSTATUS_IBI_TYPE_* are not shifted right.
* So no need to shift here.
*/
ibitype = (mstatus & I3C_MSTATUS_IBITYPE_MASK);
/*
* Wait for COMPLETE bit to be set to indicate auto IBI
* has finished for hot-join and controller role request.
* For target interrupts, the IBI payload may be longer
* than the RX FIFO so we won't get the COMPLETE bit set
* at the first round of data read. So checking of
* COMPLETE bit is deferred to the reading.
*/
switch (ibitype) {
case I3C_MSTATUS_IBITYPE_HJ:
__fallthrough;
case I3C_MSTATUS_IBITYPE_MR:
if (mcux_i3c_status_wait_timeout(base, I3C_MSTATUS_COMPLETE_MASK,
0, 10, 1000) == -ETIMEDOUT) {
LOG_ERR("Timeout waiting for COMPLETE");
mcux_i3c_request_emit_stop(base, true);
goto out_ibi_work;
}
break;
default:
break;
};
switch (ibitype) {
case I3C_MSTATUS_IBITYPE_IBI:
target = i3c_dev_list_i3c_addr_find(dev_list, (uint8_t)ibiaddr);
if (target != NULL) {
ret = mcux_i3c_do_one_xfer_read(base, &payload[0],
sizeof(payload));
if (ret >= 0) {
payload_sz = (size_t)ret;
} else {
LOG_ERR("Error reading IBI payload");
mcux_i3c_request_emit_stop(base, true);
goto out_ibi_work;
}
} else {
/* NACK IBI coming from unknown device */
mcux_i3c_ibi_respond_nack(base);
}
break;
case I3C_MSTATUS_IBITYPE_HJ:
mcux_i3c_ibi_respond_ack(base);
break;
case I3C_MSTATUS_IBITYPE_MR:
LOG_DBG("Controller role handoff not supported");
mcux_i3c_ibi_respond_nack(base);
break;
default:
break;
}
if (mcux_i3c_has_error(base)) {
/*
* If the controller detects any errors, simply
* emit a STOP to abort the IBI. The target will
* raise IBI again if so desired.
*/
mcux_i3c_request_emit_stop(base, true);
goto out_ibi_work;
}
switch (ibitype) {
case I3C_MSTATUS_IBITYPE_IBI:
if (target != NULL) {
if (i3c_ibi_work_enqueue_target_irq(target,
&payload[0], payload_sz) != 0) {
LOG_ERR("Error enqueue IBI IRQ work");
}
}
/* Finishing the IBI transaction */
mcux_i3c_request_emit_stop(base, true);
break;
case I3C_MSTATUS_IBITYPE_HJ:
if (i3c_ibi_work_enqueue_hotjoin(dev) != 0) {
LOG_ERR("Error enqueue IBI HJ work");
}
break;
case I3C_MSTATUS_IBITYPE_MR:
break;
default:
break;
}
out_ibi_work:
mcux_i3c_xfer_reset(base);
k_sem_give(&data->ibi_lock);
/* Re-enable target initiated IBI interrupt. */
base->MINTSET = I3C_MINTSET_SLVSTART_MASK;
}
static void mcux_i3c_ibi_rules_setup(struct mcux_i3c_data *data,
I3C_Type *base)
{
uint32_t ibi_rules;
int idx;
ibi_rules = 0;
for (idx = 0; idx < ARRAY_SIZE(data->ibi.addr); idx++) {
uint32_t addr_6bit;
/* Extract the lower 6-bit of target address */
addr_6bit = (uint32_t)data->ibi.addr[idx] & I3C_MIBIRULES_ADDR0_MASK;
/* Shift into correct place */
addr_6bit <<= idx * I3C_MIBIRULES_ADDR1_SHIFT;
/* Put into the temporary IBI Rules register */
ibi_rules |= addr_6bit;
}
if (!data->ibi.msb) {
/* The MSB0 field is 1 if MSB is 0 */
ibi_rules |= I3C_MIBIRULES_MSB0_MASK;
}
if (!data->ibi.has_mandatory_byte) {
/* The NOBYTE field is 1 if there is no mandatory byte */
ibi_rules |= I3C_MIBIRULES_NOBYTE_MASK;
}
/* Update the register */
base->MIBIRULES = ibi_rules;
LOG_DBG("MIBIRULES 0x%08x", ibi_rules);
}
int mcux_i3c_ibi_enable(const struct device *dev,
struct i3c_device_desc *target)
{
const struct mcux_i3c_config *config = dev->config;
struct mcux_i3c_data *data = dev->data;
I3C_Type *base = config->base;
struct i3c_ccc_events i3c_events;
uint8_t idx;
bool msb, has_mandatory_byte;
int ret = 0;
if (!i3c_device_is_ibi_capable(target)) {
ret = -EINVAL;
goto out;
}
if (data->ibi.num_addr >= ARRAY_SIZE(data->ibi.addr)) {
/* No more free entries in the IBI Rules table */
ret = -ENOMEM;
goto out;
}
/* Check for duplicate */
for (idx = 0; idx < ARRAY_SIZE(data->ibi.addr); idx++) {
if (data->ibi.addr[idx] == target->dynamic_addr) {
ret = -EINVAL;
goto out;
}
}
/* Disable controller interrupt while we configure IBI rules. */
base->MINTCLR = I3C_MINTCLR_SLVSTART_MASK;
LOG_DBG("IBI enabling for 0x%02x (BCR 0x%02x)",
target->dynamic_addr, target->bcr);
msb = (target->dynamic_addr & BIT(6)) == BIT(6);
has_mandatory_byte = i3c_ibi_has_payload(target);
/*
* If there are already addresses in the table, we must
* check if the incoming entry is compatible with
* the existing ones.
*/
if (data->ibi.num_addr > 0) {
/*
* 1. All devices in the table must all use mandatory
* bytes, or do not.
*
* 2. Each address in entry only captures the lowest 6-bit.
* The MSB (7th bit) is captured separated in another bit
* in the register. So all addresses must have the same MSB.
*/
if ((has_mandatory_byte != data->ibi.has_mandatory_byte) ||
(msb != data->ibi.msb)) {
ret = -EINVAL;
goto out;
}
/* Find an empty address slot */
for (idx = 0; idx < ARRAY_SIZE(data->ibi.addr); idx++) {
if (data->ibi.addr[idx] == 0U) {
break;
}
}
} else {
/*
* If the incoming address is the first in the table,
* it dictates future compatibilities.
*/
data->ibi.has_mandatory_byte = has_mandatory_byte;
data->ibi.msb = msb;
idx = 0;
}
data->ibi.addr[idx] = target->dynamic_addr;
data->ibi.num_addr += 1U;
mcux_i3c_ibi_rules_setup(data, base);
/* Tell target to enable IBI */
i3c_events.events = I3C_CCC_EVT_INTR;
ret = i3c_ccc_do_events_set(target, true, &i3c_events);
if (ret != 0) {
LOG_ERR("Error sending IBI ENEC for 0x%02x (%d)",
target->dynamic_addr, ret);
}
out:
if (data->ibi.num_addr > 0U) {
/*
* Enable controller to raise interrupt when a target
* initiates IBI.
*/
base->MINTSET = I3C_MINTSET_SLVSTART_MASK;
}
return ret;
}
int mcux_i3c_ibi_disable(const struct device *dev,
struct i3c_device_desc *target)
{
const struct mcux_i3c_config *config = dev->config;
struct mcux_i3c_data *data = dev->data;
I3C_Type *base = config->base;
struct i3c_ccc_events i3c_events;
int ret = 0;
int idx;
if (!i3c_device_is_ibi_capable(target)) {
ret = -EINVAL;
goto out;
}
for (idx = 0; idx < ARRAY_SIZE(data->ibi.addr); idx++) {
if (target->dynamic_addr == data->ibi.addr[idx]) {
break;
}
}
if (idx == ARRAY_SIZE(data->ibi.addr)) {
/* Target is not in list of registered addresses. */
ret = -ENODEV;
goto out;
}
/* Disable controller interrupt while we configure IBI rules. */
base->MINTCLR = I3C_MINTCLR_SLVSTART_MASK;
data->ibi.addr[idx] = 0U;
data->ibi.num_addr -= 1U;
/* Tell target to disable IBI */
i3c_events.events = I3C_CCC_EVT_INTR;
ret = i3c_ccc_do_events_set(target, false, &i3c_events);
if (ret != 0) {
LOG_ERR("Error sending IBI DISEC for 0x%02x (%d)",
target->dynamic_addr, ret);
goto out;
}
mcux_i3c_ibi_rules_setup(data, base);
out:
if (data->ibi.num_addr > 0U) {
/*
* Enable controller to raise interrupt when a target
* initiates IBI.
*/
base->MINTSET = I3C_MINTSET_SLVSTART_MASK;
}
return ret;
}
#endif /* CONFIG_I3C_USE_IBI */
/**
* @brief Interrupt Service Routine
*
* Currently only services interrupts when any target initiates IBIs.
*
* @param dev Pointer to controller device driver instance.
*/
static void mcux_i3c_isr(const struct device *dev)
{
#ifdef CONFIG_I3C_USE_IBI
const struct mcux_i3c_config *config = dev->config;
I3C_Type *base = config->base;
/* Target initiated IBIs */
if (mcux_i3c_status_is_set(base, I3C_MSTATUS_SLVSTART_MASK)) {
/*
* Disable further target initiated IBI interrupt
* while we try to service the current one.
*/
base->MINTCLR = I3C_MINTCLR_SLVSTART_MASK;
/*
* Handle IBI in workqueue.
*/
i3c_ibi_work_enqueue_cb(dev, mcux_i3c_ibi_work);
}
#else
ARG_UNUSED(dev);
#endif
}
/**
* @brief Configure I3C hardware.
*
* @param dev Pointer to controller device driver instance.
* @param type Type of configuration parameters being passed
* in @p config.
* @param config Pointer to the configuration parameters.
*
* @retval 0 If successful.
* @retval -EINVAL If invalid configure parameters.
* @retval -EIO General Input/Output errors.
* @retval -ENOSYS If not implemented.
*/
static int mcux_i3c_configure(const struct device *dev,
enum i3c_config_type type, void *config)
{
const struct mcux_i3c_config *dev_cfg = dev->config;
struct mcux_i3c_data *dev_data = dev->data;
I3C_Type *base = dev_cfg->base;
i3c_master_config_t *ctrl_config_hal = &dev_data->ctrl_config_hal;
struct i3c_config_controller *ctrl_cfg = config;
uint32_t clock_freq;
int ret = 0;
if (type != I3C_CONFIG_CONTROLLER) {
ret = -EINVAL;
goto out_configure;
}
/*
* Check for valid configuration parameters.
*
* Currently, must be the primary controller.
*/
if ((ctrl_cfg->is_secondary) ||
(ctrl_cfg->scl.i2c == 0U) ||
(ctrl_cfg->scl.i3c == 0U)) {
ret = -EINVAL;
goto out_configure;
}
/* Get the clock frequency */
if (clock_control_get_rate(dev_cfg->clock_dev, dev_cfg->clock_subsys,
&clock_freq)) {
ret = -EINVAL;
goto out_configure;
}
ctrl_config_hal->baudRate_Hz.i2cBaud = ctrl_cfg->scl.i2c;
ctrl_config_hal->baudRate_Hz.i3cPushPullBaud = ctrl_cfg->scl.i3c;
/* Initialize hardware */
I3C_MasterInit(base, ctrl_config_hal, clock_freq);
out_configure:
return ret;
}
/**
* @brief Get configuration of the I3C hardware.
*
* This provides a way to get the current configuration of the I3C hardware.
*
* This can return cached config or probed hardware parameters, but it has to
* be up to date with current configuration.
*
* @param[in] dev Pointer to controller device driver instance.
* @param[in] type Type of configuration parameters being passed
* in @p config.
* @param[in,out] config Pointer to the configuration parameters.
*
* Note that if @p type is @c I3C_CONFIG_CUSTOM, @p config must contain
* the ID of the parameter to be retrieved.
*
* @retval 0 If successful.
* @retval -EIO General Input/Output errors.
* @retval -ENOSYS If not implemented.
*/
static int mcux_i3c_config_get(const struct device *dev,
enum i3c_config_type type, void *config)
{
struct mcux_i3c_data *data = dev->data;
int ret = 0;
if ((type != I3C_CONFIG_CONTROLLER) || (config == NULL)) {
ret = -EINVAL;
goto out_configure;
}
(void)memcpy(config, &data->common.ctrl_config, sizeof(data->common.ctrl_config));
out_configure:
return ret;
}
/**
* @brief Initialize the hardware.
*
* @param dev Pointer to controller device driver instance.
*/
static int mcux_i3c_init(const struct device *dev)
{
const struct mcux_i3c_config *config = dev->config;
struct mcux_i3c_data *data = dev->data;
I3C_Type *base = config->base;
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
int ret = 0;
ret = i3c_addr_slots_init(dev);
if (ret != 0) {
goto err_out;
}
CLOCK_SetClkDiv(kCLOCK_DivI3cClk, data->clocks.clk_div_pp);
CLOCK_SetClkDiv(kCLOCK_DivI3cSlowClk, data->clocks.clk_div_od);
CLOCK_SetClkDiv(kCLOCK_DivI3cTcClk, data->clocks.clk_div_tc);
#ifdef CONFIG_PINCTRL
ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (ret != 0) {
goto err_out;
}
#endif
k_sem_init(&data->lock, 1, 1);
k_sem_init(&data->ibi_lock, 1, 1);
/*
* Default controller configuration to act as the primary
* and active controller.
*/
I3C_MasterGetDefaultConfig(&data->ctrl_config_hal);
/* Set default SCL clock rate (in Hz) */
if (ctrl_config->scl.i2c == 0U) {
ctrl_config->scl.i2c = data->ctrl_config_hal.baudRate_Hz.i2cBaud;
}
if (ctrl_config->scl.i3c == 0U) {
ctrl_config->scl.i3c = data->ctrl_config_hal.baudRate_Hz.i3cPushPullBaud;
}
if (data->clocks.i3c_od_scl_hz != 0U) {
data->ctrl_config_hal.baudRate_Hz.i3cOpenDrainBaud = data->clocks.i3c_od_scl_hz;
}
/* Currently can only act as primary controller. */
data->common.ctrl_config.is_secondary = false;
/* HDR mode not supported at the moment. */
data->common.ctrl_config.supported_hdr = 0U;
ret = mcux_i3c_configure(dev, I3C_CONFIG_CONTROLLER, ctrl_config);
if (ret != 0) {
ret = -EINVAL;
goto err_out;
}
/* Disable all interrupts */
base->MINTCLR = I3C_MINTCLR_SLVSTART_MASK |
I3C_MINTCLR_MCTRLDONE_MASK |
I3C_MINTCLR_COMPLETE_MASK |
I3C_MINTCLR_RXPEND_MASK |
I3C_MINTCLR_TXNOTFULL_MASK |
I3C_MINTCLR_IBIWON_MASK |
I3C_MINTCLR_ERRWARN_MASK |
I3C_MINTCLR_NOWMASTER_MASK;
/* Just in case the bus is not in idle. */
ret = mcux_i3c_recover_bus(dev);
if (ret != 0) {
ret = -EIO;
goto err_out;
}
/* Configure interrupt */
config->irq_config_func(dev);
/* Perform bus initialization */
ret = i3c_bus_init(dev, &config->common.dev_list);
err_out:
return ret;
}
static int mcux_i3c_i2c_api_configure(const struct device *dev, uint32_t dev_config)
{
return -ENOSYS;
}
static int mcux_i3c_i2c_api_transfer(const struct device *dev,
struct i2c_msg *msgs,
uint8_t num_msgs,
uint16_t addr)
{
struct i3c_i2c_device_desc *i2c_dev =
mcux_i3c_i2c_device_find(dev, addr);
int ret;
if (i2c_dev == NULL) {
ret = -ENODEV;
} else {
ret = mcux_i3c_i2c_transfer(dev, i2c_dev, msgs, num_msgs);
}
return ret;
}
static const struct i3c_driver_api mcux_i3c_driver_api = {
.i2c_api.configure = mcux_i3c_i2c_api_configure,
.i2c_api.transfer = mcux_i3c_i2c_api_transfer,
.i2c_api.recover_bus = mcux_i3c_recover_bus,
.configure = mcux_i3c_configure,
.config_get = mcux_i3c_config_get,
.recover_bus = mcux_i3c_recover_bus,
.do_daa = mcux_i3c_do_daa,
.do_ccc = mcux_i3c_do_ccc,
.i3c_device_find = mcux_i3c_device_find,
.i3c_xfers = mcux_i3c_transfer,
#ifdef CONFIG_I3C_USE_IBI
.ibi_enable = mcux_i3c_ibi_enable,
.ibi_disable = mcux_i3c_ibi_disable,
#endif
};
#ifdef CONFIG_PINCTRL
#define I3C_MCUX_PINCTRL_DEFINE(n) PINCTRL_DT_INST_DEFINE(n);
#define I3C_MCUX_PINCTRL_INIT(n) .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),
#else
#define I3C_MCUX_PINCTRL_DEFINE(n)
#define I3C_MCUX_PINCTRL_INIT(n)
#endif
#define I3C_MCUX_DEVICE(id) \
I3C_MCUX_PINCTRL_DEFINE(id) \
static void mcux_i3c_config_func_##id(const struct device *dev); \
static struct i3c_device_desc mcux_i3c_device_array_##id[] = \
I3C_DEVICE_ARRAY_DT_INST(id); \
static struct i3c_i2c_device_desc mcux_i3c_i2c_device_array_##id[] = \
I3C_I2C_DEVICE_ARRAY_DT_INST(id); \
static const struct mcux_i3c_config mcux_i3c_config_##id = { \
.base = (I3C_Type *) DT_INST_REG_ADDR(id), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name), \
.irq_config_func = mcux_i3c_config_func_##id, \
.common.dev_list.i3c = mcux_i3c_device_array_##id, \
.common.dev_list.num_i3c = ARRAY_SIZE(mcux_i3c_device_array_##id), \
.common.dev_list.i2c = mcux_i3c_i2c_device_array_##id, \
.common.dev_list.num_i2c = ARRAY_SIZE(mcux_i3c_i2c_device_array_##id), \
I3C_MCUX_PINCTRL_INIT(id) \
}; \
static struct mcux_i3c_data mcux_i3c_data_##id = { \
.clocks.i3c_od_scl_hz = DT_INST_PROP_OR(id, i3c_od_scl_hz, 0), \
.common.ctrl_config.scl.i3c = DT_INST_PROP_OR(id, i3c_scl_hz, 0), \
.common.ctrl_config.scl.i2c = DT_INST_PROP_OR(id, i2c_scl_hz, 0), \
.clocks.clk_div_pp = DT_INST_PROP(id, clk_divider), \
.clocks.clk_div_od = DT_INST_PROP(id, clk_divider_slow), \
.clocks.clk_div_tc = DT_INST_PROP(id, clk_divider_tc), \
}; \
DEVICE_DT_INST_DEFINE(id, \
mcux_i3c_init, \
NULL, \
&mcux_i3c_data_##id, \
&mcux_i3c_config_##id, \
POST_KERNEL, \
CONFIG_I3C_CONTROLLER_INIT_PRIORITY, \
&mcux_i3c_driver_api); \
static void mcux_i3c_config_func_##id(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(id), \
DT_INST_IRQ(id, priority), \
mcux_i3c_isr, \
DEVICE_DT_INST_GET(id), \
0); \
irq_enable(DT_INST_IRQN(id)); \
}; \
DT_INST_FOREACH_STATUS_OKAY(I3C_MCUX_DEVICE)