80e1482ddd
This change marks each instance of the 'api' as 'static const'. The rationale is that 'api' is used for declaring internal module interfaces and is not intended to be modified at runtime. By using 'static const', we ensure immutability, leading to usage of only .rodata and a reduction in the .data area. Signed-off-by: Pisit Sawangvonganan <pisit@ndrsolution.com>
833 lines
19 KiB
C
833 lines
19 KiB
C
/* ieee802154_cc1200.c - TI CC1200 driver */
|
|
|
|
#define DT_DRV_COMPAT ti_cc1200
|
|
|
|
/*
|
|
* Copyright (c) 2017 Intel Corporation.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define LOG_MODULE_NAME ieee802154_cc1200
|
|
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
|
|
|
|
#include <errno.h>
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/arch/cpu.h>
|
|
#include <zephyr/debug/stack.h>
|
|
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/net/net_if.h>
|
|
#include <zephyr/net/net_pkt.h>
|
|
|
|
#include <zephyr/sys/byteorder.h>
|
|
#include <string.h>
|
|
#include <zephyr/random/random.h>
|
|
|
|
#include <zephyr/drivers/spi.h>
|
|
#include <zephyr/drivers/gpio.h>
|
|
|
|
#include <zephyr/net/ieee802154_radio.h>
|
|
|
|
#include "ieee802154_cc1200.h"
|
|
#include "ieee802154_cc1200_rf.h"
|
|
|
|
/* ToDo: supporting 802.15.4g will require GPIO2
|
|
* used as CC1200_GPIO_SIG_RXFIFO_THR
|
|
*
|
|
* Note: GPIO3 is unused.
|
|
*/
|
|
#define CC1200_IOCFG3 CC1200_GPIO_SIG_MARC_2PIN_STATUS_0
|
|
#define CC1200_IOCFG2 CC1200_GPIO_SIG_MARC_2PIN_STATUS_1
|
|
#define CC1200_IOCFG0 CC1200_GPIO_SIG_PKT_SYNC_RXTX
|
|
|
|
/***********************
|
|
* Debugging functions *
|
|
**********************/
|
|
static void cc1200_print_status(uint8_t status)
|
|
{
|
|
if (status == CC1200_STATUS_IDLE) {
|
|
LOG_DBG("Idling");
|
|
} else if (status == CC1200_STATUS_RX) {
|
|
LOG_DBG("Receiving");
|
|
} else if (status == CC1200_STATUS_TX) {
|
|
LOG_DBG("Transmitting");
|
|
} else if (status == CC1200_STATUS_FSTXON) {
|
|
LOG_DBG("FS TX on");
|
|
} else if (status == CC1200_STATUS_CALIBRATE) {
|
|
LOG_DBG("Calibrating");
|
|
} else if (status == CC1200_STATUS_SETTLING) {
|
|
LOG_DBG("Settling");
|
|
} else if (status == CC1200_STATUS_RX_FIFO_ERROR) {
|
|
LOG_DBG("RX FIFO error!");
|
|
} else if (status == CC1200_STATUS_TX_FIFO_ERROR) {
|
|
LOG_DBG("TX FIFO error!");
|
|
}
|
|
}
|
|
|
|
/*********************
|
|
* Generic functions *
|
|
********************/
|
|
|
|
bool z_cc1200_access_reg(const struct device *dev, bool read, uint8_t addr,
|
|
void *data, size_t length, bool extended, bool burst)
|
|
{
|
|
const struct cc1200_config *config = dev->config;
|
|
uint8_t cmd_buf[2];
|
|
const struct spi_buf buf[2] = {
|
|
{
|
|
.buf = cmd_buf,
|
|
.len = extended ? 2 : 1,
|
|
},
|
|
{
|
|
.buf = data,
|
|
.len = length,
|
|
|
|
}
|
|
};
|
|
struct spi_buf_set tx = { .buffers = buf };
|
|
|
|
cmd_buf[0] = 0U;
|
|
|
|
if (burst) {
|
|
cmd_buf[0] |= CC1200_ACCESS_BURST;
|
|
}
|
|
|
|
if (extended) {
|
|
cmd_buf[0] |= CC1200_REG_EXTENDED_ADDRESS;
|
|
cmd_buf[1] = addr;
|
|
} else {
|
|
cmd_buf[0] |= addr;
|
|
}
|
|
|
|
if (read) {
|
|
const struct spi_buf_set rx = {
|
|
.buffers = buf,
|
|
.count = 2
|
|
};
|
|
|
|
cmd_buf[0] |= CC1200_ACCESS_RD;
|
|
|
|
tx.count = 1;
|
|
|
|
return (spi_transceive_dt(&config->bus, &tx, &rx) == 0);
|
|
}
|
|
|
|
/* CC1200_ACCESS_WR is 0 so no need to play with it */
|
|
tx.count = data ? 2 : 1;
|
|
|
|
return (spi_write_dt(&config->bus, &tx) == 0);
|
|
}
|
|
|
|
static inline uint8_t *get_mac(const struct device *dev)
|
|
{
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
|
|
#if defined(CONFIG_IEEE802154_CC1200_RANDOM_MAC)
|
|
uint32_t *ptr = (uint32_t *)(cc1200->mac_addr + 4);
|
|
|
|
UNALIGNED_PUT(sys_rand32_get(), ptr);
|
|
|
|
cc1200->mac_addr[7] = (cc1200->mac_addr[7] & ~0x01) | 0x02;
|
|
#else
|
|
cc1200->mac_addr[4] = CONFIG_IEEE802154_CC1200_MAC4;
|
|
cc1200->mac_addr[5] = CONFIG_IEEE802154_CC1200_MAC5;
|
|
cc1200->mac_addr[6] = CONFIG_IEEE802154_CC1200_MAC6;
|
|
cc1200->mac_addr[7] = CONFIG_IEEE802154_CC1200_MAC7;
|
|
#endif
|
|
|
|
cc1200->mac_addr[0] = 0x00;
|
|
cc1200->mac_addr[1] = 0x12;
|
|
cc1200->mac_addr[2] = 0x4b;
|
|
cc1200->mac_addr[3] = 0x00;
|
|
|
|
return cc1200->mac_addr;
|
|
}
|
|
|
|
static uint8_t get_status(const struct device *dev)
|
|
{
|
|
uint8_t val;
|
|
|
|
if (z_cc1200_access_reg(dev, true, CC1200_INS_SNOP,
|
|
&val, 1, false, false)) {
|
|
/* See Section 3.1.2 */
|
|
return val & CC1200_STATUS_MASK;
|
|
}
|
|
|
|
/* We cannot get the status, so let's assume about readiness */
|
|
return CC1200_STATUS_CHIP_NOT_READY;
|
|
}
|
|
|
|
/******************
|
|
* GPIO functions *
|
|
*****************/
|
|
|
|
static inline void gpio0_int_handler(const struct device *port,
|
|
struct gpio_callback *cb, uint32_t pins)
|
|
{
|
|
struct cc1200_context *cc1200 =
|
|
CONTAINER_OF(cb, struct cc1200_context, rx_tx_cb);
|
|
|
|
if (atomic_get(&cc1200->tx) == 1) {
|
|
if (atomic_get(&cc1200->tx_start) == 0) {
|
|
atomic_set(&cc1200->tx_start, 1);
|
|
} else {
|
|
atomic_set(&cc1200->tx, 0);
|
|
}
|
|
|
|
k_sem_give(&cc1200->tx_sync);
|
|
} else {
|
|
if (atomic_get(&cc1200->rx) == 1) {
|
|
k_sem_give(&cc1200->rx_lock);
|
|
atomic_set(&cc1200->rx, 0);
|
|
} else {
|
|
atomic_set(&cc1200->rx, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void enable_gpio0_interrupt(const struct device *dev, bool enable)
|
|
{
|
|
const struct cc1200_config *cfg = dev->config;
|
|
gpio_flags_t mode = enable ? GPIO_INT_EDGE_TO_ACTIVE : GPIO_INT_DISABLE;
|
|
|
|
gpio_pin_interrupt_configure_dt(&cfg->interrupt, mode);
|
|
}
|
|
|
|
static int setup_gpio_callback(const struct device *dev)
|
|
{
|
|
const struct cc1200_config *cfg = dev->config;
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
|
|
gpio_init_callback(&cc1200->rx_tx_cb, gpio0_int_handler, BIT(cfg->interrupt.pin));
|
|
|
|
if (gpio_add_callback(cfg->interrupt.port, &cc1200->rx_tx_cb) != 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************
|
|
* RF functions *
|
|
***************/
|
|
|
|
static uint8_t get_lo_divider(const struct device *dev)
|
|
{
|
|
/* See Table 34 */
|
|
return FSD_BANDSELECT(read_reg_fs_cfg(dev)) << 1;
|
|
}
|
|
|
|
static bool write_reg_freq(const struct device *dev, uint32_t freq)
|
|
{
|
|
uint8_t freq_data[3];
|
|
|
|
freq_data[0] = (uint8_t)((freq & 0x00FF0000) >> 16);
|
|
freq_data[1] = (uint8_t)((freq & 0x0000FF00) >> 8);
|
|
freq_data[2] = (uint8_t)(freq & 0x000000FF);
|
|
|
|
return z_cc1200_access_reg(dev, false, CC1200_REG_FREQ2,
|
|
freq_data, 3, true, true);
|
|
}
|
|
|
|
|
|
/* See Section 9.12 - RF programming
|
|
*
|
|
* The given formula in datasheet cannot be simply applied here, where CPU
|
|
* limits us to unsigned integers of 32 bits. Instead, "slicing" it to
|
|
* parts that fits in such limit is a solution which is applied below.
|
|
*
|
|
* The original formula being (freqoff is neglected):
|
|
* Freq = ( RF * Lo_Div * 2^16 ) / Xtal
|
|
*
|
|
* RF and Xtal are, from here, expressed in KHz.
|
|
*
|
|
* It first calculates the targeted RF with given ChanCenterFreq0, channel
|
|
* spacing and the channel number.
|
|
*
|
|
* The calculation will slice the targeted RF by multiple of 10:
|
|
* 10^n where n is in [5, 3]. The rest, below 1000, is taken at once.
|
|
* Let's take the 434000 KHz RF for instance:
|
|
* it will be "sliced" in 3 parts: 400000, 30000, 4000.
|
|
* Or the 169406 KHz RF, 4 parts: 100000, 60000, 9000, 406.
|
|
*
|
|
* This permits also to play with Xtal to keep the result big enough to avoid
|
|
* losing precision. A factor - growing as much as Xtal decrease - is then
|
|
* applied to get to the proper result. Which one is rounded to the nearest
|
|
* integer, again to get a bit better precision.
|
|
*
|
|
* In the end, this algorithm below works for all the supported bands by CC1200.
|
|
* User does not need to pass anything extra besides the nominal settings: no
|
|
* pre-computed part or else.
|
|
*/
|
|
static uint32_t rf_evaluate_freq_setting(const struct device *dev, uint32_t chan)
|
|
{
|
|
struct cc1200_context *ctx = dev->data;
|
|
uint32_t xtal = CONFIG_IEEE802154_CC1200_XOSC;
|
|
uint32_t mult_10 = 100000U;
|
|
uint32_t factor = 1U;
|
|
uint32_t freq = 0U;
|
|
uint32_t rf, lo_div;
|
|
|
|
rf = ctx->rf_settings->chan_center_freq0 +
|
|
((chan * (uint32_t)ctx->rf_settings->channel_spacing) / 10U);
|
|
lo_div = get_lo_divider(dev);
|
|
|
|
LOG_DBG("Calculating freq for %u KHz RF (%u)", rf, lo_div);
|
|
|
|
while (rf > 0) {
|
|
uint32_t hz, freq_tmp, rst;
|
|
|
|
if (rf < 1000) {
|
|
hz = rf;
|
|
} else {
|
|
hz = rf / mult_10;
|
|
hz *= mult_10;
|
|
}
|
|
|
|
if (hz < 1000) {
|
|
freq_tmp = (hz * lo_div * 65536U) / xtal;
|
|
} else {
|
|
freq_tmp = ((hz * lo_div) / xtal) * 65536U;
|
|
}
|
|
|
|
rst = freq_tmp % factor;
|
|
freq_tmp /= factor;
|
|
|
|
if (factor > 1 && (rst/(factor/10U)) > 5) {
|
|
freq_tmp++;
|
|
}
|
|
|
|
freq += freq_tmp;
|
|
|
|
factor *= 10U;
|
|
mult_10 /= 10U;
|
|
xtal /= 10U;
|
|
rf -= hz;
|
|
}
|
|
|
|
LOG_DBG("FREQ is 0x%06X", freq);
|
|
|
|
return freq;
|
|
}
|
|
|
|
static bool
|
|
rf_install_settings(const struct device *dev,
|
|
const struct cc1200_rf_registers_set *rf_settings)
|
|
{
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
|
|
if (!z_cc1200_access_reg(dev, false, CC1200_REG_SYNC3,
|
|
(void *)rf_settings->registers,
|
|
CC1200_RF_NON_EXT_SPACE_REGS, false, true) ||
|
|
!z_cc1200_access_reg(dev, false, CC1200_REG_IF_MIX_CFG,
|
|
(uint8_t *)rf_settings->registers
|
|
+ CC1200_RF_NON_EXT_SPACE_REGS,
|
|
CC1200_RF_EXT_SPACE_REGS, true, true) ||
|
|
!write_reg_pkt_len(dev, 0xFF)) {
|
|
LOG_ERR("Could not install RF settings");
|
|
return false;
|
|
}
|
|
|
|
cc1200->rf_settings = rf_settings;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int rf_calibrate(const struct device *dev)
|
|
{
|
|
if (!instruct_scal(dev)) {
|
|
LOG_ERR("Could not calibrate RF");
|
|
return -EIO;
|
|
}
|
|
|
|
k_busy_wait(USEC_PER_MSEC * 5U);
|
|
|
|
/* We need to re-enable RX as SCAL shuts off the freq synth */
|
|
if (!instruct_sidle(dev) ||
|
|
!instruct_sfrx(dev) ||
|
|
!instruct_srx(dev)) {
|
|
LOG_ERR("Could not switch to RX");
|
|
return -EIO;
|
|
}
|
|
|
|
k_busy_wait(USEC_PER_MSEC * 10U);
|
|
|
|
cc1200_print_status(get_status(dev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************
|
|
* TX functions *
|
|
***************/
|
|
|
|
static inline bool write_txfifo(const struct device *dev,
|
|
void *data, size_t length)
|
|
{
|
|
return z_cc1200_access_reg(dev, false,
|
|
CC1200_REG_TXFIFO,
|
|
data, length, false, true);
|
|
}
|
|
|
|
/****************
|
|
* RX functions *
|
|
***************/
|
|
|
|
static inline bool read_rxfifo(const struct device *dev,
|
|
void *data, size_t length)
|
|
{
|
|
return z_cc1200_access_reg(dev, true,
|
|
CC1200_REG_RXFIFO,
|
|
data, length, false, true);
|
|
}
|
|
|
|
static inline uint8_t get_packet_length(const struct device *dev)
|
|
{
|
|
uint8_t len;
|
|
|
|
if (z_cc1200_access_reg(dev, true, CC1200_REG_RXFIFO,
|
|
&len, 1, false, true)) {
|
|
return len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool verify_rxfifo_validity(const struct device *dev,
|
|
uint8_t pkt_len)
|
|
{
|
|
/* packet should be at least 3 bytes as a ACK */
|
|
if (pkt_len < 3 ||
|
|
read_reg_num_rxbytes(dev) > (pkt_len + CC1200_FCS_LEN)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool read_rxfifo_content(const struct device *dev,
|
|
struct net_buf *buf, uint8_t len)
|
|
{
|
|
|
|
if (!read_rxfifo(dev, buf->data, len) ||
|
|
(get_status(dev) == CC1200_STATUS_RX_FIFO_ERROR)) {
|
|
return false;
|
|
}
|
|
|
|
net_buf_add(buf, len);
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool verify_crc(const struct device *dev, struct net_pkt *pkt)
|
|
{
|
|
uint8_t status[2];
|
|
int8_t rssi;
|
|
|
|
if (!read_rxfifo(dev, status, 2)) {
|
|
return false;
|
|
}
|
|
|
|
if (!(status[1] & CC1200_FCS_CRC_OK)) {
|
|
return false;
|
|
}
|
|
|
|
rssi = (int8_t) status[0];
|
|
net_pkt_set_ieee802154_rssi_dbm(
|
|
pkt, rssi == CC1200_INVALID_RSSI ? IEEE802154_MAC_RSSI_DBM_UNDEFINED : rssi);
|
|
net_pkt_set_ieee802154_lqi(pkt, status[1] & CC1200_FCS_LQI_MASK);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void cc1200_rx(void *p1, void *p2, void *p3)
|
|
{
|
|
ARG_UNUSED(p2);
|
|
ARG_UNUSED(p3);
|
|
|
|
const struct device *dev = p1;
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
struct net_pkt *pkt;
|
|
uint8_t pkt_len;
|
|
|
|
while (1) {
|
|
pkt = NULL;
|
|
|
|
k_sem_take(&cc1200->rx_lock, K_FOREVER);
|
|
|
|
if (get_status(dev) == CC1200_STATUS_RX_FIFO_ERROR) {
|
|
LOG_ERR("Fifo error");
|
|
goto flush;
|
|
}
|
|
|
|
pkt_len = get_packet_length(dev);
|
|
if (!verify_rxfifo_validity(dev, pkt_len)) {
|
|
LOG_ERR("Invalid frame");
|
|
goto flush;
|
|
}
|
|
|
|
pkt = net_pkt_rx_alloc_with_buffer(cc1200->iface, pkt_len,
|
|
AF_UNSPEC, 0, K_NO_WAIT);
|
|
if (!pkt) {
|
|
LOG_ERR("No free pkt available");
|
|
goto flush;
|
|
}
|
|
|
|
if (!read_rxfifo_content(dev, pkt->buffer, pkt_len)) {
|
|
LOG_ERR("No content read");
|
|
goto flush;
|
|
}
|
|
|
|
if (!verify_crc(dev, pkt)) {
|
|
LOG_ERR("Bad packet CRC");
|
|
goto out;
|
|
}
|
|
|
|
if (ieee802154_handle_ack(cc1200->iface, pkt) == NET_OK) {
|
|
LOG_DBG("ACK packet handled");
|
|
goto out;
|
|
}
|
|
|
|
LOG_DBG("Caught a packet (%u)", pkt_len);
|
|
|
|
if (net_recv_data(cc1200->iface, pkt) < 0) {
|
|
LOG_DBG("Packet dropped by NET stack");
|
|
goto out;
|
|
}
|
|
|
|
log_stack_usage(&cc1200->rx_thread);
|
|
continue;
|
|
flush:
|
|
LOG_DBG("Flushing RX");
|
|
instruct_sidle(dev);
|
|
instruct_sfrx(dev);
|
|
instruct_srx(dev);
|
|
out:
|
|
if (pkt) {
|
|
net_pkt_unref(pkt);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
/********************
|
|
* Radio device API *
|
|
*******************/
|
|
static enum ieee802154_hw_caps cc1200_get_capabilities(const struct device *dev)
|
|
{
|
|
return IEEE802154_HW_FCS;
|
|
}
|
|
|
|
static int cc1200_cca(const struct device *dev)
|
|
{
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
|
|
if (atomic_get(&cc1200->rx) == 0) {
|
|
uint8_t status = read_reg_rssi0(dev);
|
|
|
|
if (!(status & CARRIER_SENSE) &&
|
|
(status & CARRIER_SENSE_VALID)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
LOG_WRN("Busy");
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int cc1200_set_channel(const struct device *dev, uint16_t channel)
|
|
{
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
uint32_t freq;
|
|
|
|
/* As SUN FSK provides a host of configurations with extremely different
|
|
* channel counts it doesn't make sense to validate (aka -EINVAL) a
|
|
* global upper limit on the number of supported channels on this page.
|
|
*/
|
|
if (channel > IEEE802154_CC1200_CHANNEL_LIMIT) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Unlike usual 15.4 chips, cc1200 is closer to a bare metal radio modem
|
|
* and thus does not provide any means to select a channel directly, but
|
|
* requires instead that one calculates and configures the actual
|
|
* targeted frequency for the requested channel.
|
|
*
|
|
* See rf_evaluate_freq_setting() above.
|
|
*/
|
|
|
|
if (atomic_get(&cc1200->rx) != 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
freq = rf_evaluate_freq_setting(dev, channel);
|
|
|
|
if (!write_reg_freq(dev, freq) ||
|
|
rf_calibrate(dev)) {
|
|
LOG_ERR("Could not set channel %u", channel);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cc1200_set_txpower(const struct device *dev, int16_t dbm)
|
|
{
|
|
uint8_t pa_power_ramp;
|
|
|
|
LOG_DBG("%d dbm", dbm);
|
|
|
|
/* See Section 7.1 */
|
|
dbm = ((dbm + 18) * 2) - 1;
|
|
if ((dbm <= 3) || (dbm >= 64)) {
|
|
LOG_ERR("Unhandled value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pa_power_ramp = read_reg_pa_cfg1(dev) & ~PA_POWER_RAMP_MASK;
|
|
pa_power_ramp |= ((uint8_t) dbm) & PA_POWER_RAMP_MASK;
|
|
|
|
if (!write_reg_pa_cfg1(dev, pa_power_ramp)) {
|
|
LOG_ERR("Could not proceed");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cc1200_tx(const struct device *dev,
|
|
enum ieee802154_tx_mode mode,
|
|
struct net_pkt *pkt,
|
|
struct net_buf *frag)
|
|
{
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
uint8_t *frame = frag->data;
|
|
uint8_t len = frag->len;
|
|
bool status = false;
|
|
|
|
if (mode != IEEE802154_TX_MODE_DIRECT) {
|
|
NET_ERR("TX mode %d not supported", mode);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
LOG_DBG("%p (%u)", frag, len);
|
|
|
|
/* ToDo:
|
|
* Supporting 802.15.4g will require to loop in pkt's frags
|
|
* depending on len value, this will also take more time.
|
|
*/
|
|
|
|
if (!instruct_sidle(dev) ||
|
|
!instruct_sfrx(dev) ||
|
|
!instruct_sftx(dev) ||
|
|
!instruct_sfstxon(dev)) {
|
|
LOG_ERR("Cannot switch to TX mode");
|
|
goto out;
|
|
}
|
|
|
|
if (!write_txfifo(dev, &len, CC1200_PHY_HDR_LEN) ||
|
|
!write_txfifo(dev, frame, len) ||
|
|
read_reg_num_txbytes(dev) != (len + CC1200_PHY_HDR_LEN)) {
|
|
LOG_ERR("Cannot fill-in TX fifo");
|
|
goto out;
|
|
}
|
|
|
|
atomic_set(&cc1200->tx, 1);
|
|
atomic_set(&cc1200->tx_start, 0);
|
|
|
|
if (!instruct_stx(dev)) {
|
|
LOG_ERR("Cannot start transmission");
|
|
goto out;
|
|
}
|
|
|
|
/* Wait for SYNC to be sent */
|
|
k_sem_take(&cc1200->tx_sync, K_MSEC(100));
|
|
if (atomic_get(&cc1200->tx_start) == 1) {
|
|
/* Now wait for the packet to be fully sent */
|
|
k_sem_take(&cc1200->tx_sync, K_MSEC(100));
|
|
}
|
|
|
|
out:
|
|
cc1200_print_status(get_status(dev));
|
|
|
|
if (atomic_get(&cc1200->tx) == 1 &&
|
|
read_reg_num_txbytes(dev) != 0) {
|
|
LOG_ERR("TX Failed");
|
|
|
|
atomic_set(&cc1200->tx_start, 0);
|
|
instruct_sftx(dev);
|
|
status = false;
|
|
} else {
|
|
status = true;
|
|
}
|
|
|
|
atomic_set(&cc1200->tx, 0);
|
|
|
|
/* Get back to RX */
|
|
instruct_srx(dev);
|
|
|
|
return status ? 0 : -EIO;
|
|
}
|
|
|
|
static int cc1200_start(const struct device *dev)
|
|
{
|
|
if (!instruct_sidle(dev) ||
|
|
!instruct_sftx(dev) ||
|
|
!instruct_sfrx(dev) ||
|
|
rf_calibrate(dev)) {
|
|
LOG_ERR("Could not proceed");
|
|
return -EIO;
|
|
}
|
|
|
|
enable_gpio0_interrupt(dev, true);
|
|
|
|
cc1200_print_status(get_status(dev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cc1200_stop(const struct device *dev)
|
|
{
|
|
enable_gpio0_interrupt(dev, false);
|
|
|
|
if (!instruct_spwd(dev)) {
|
|
LOG_ERR("Could not proceed");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* driver-allocated attribute memory - constant across all driver instances as
|
|
* this driver's channel range is configured via a global KConfig setting.
|
|
*/
|
|
IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, 0, IEEE802154_CC1200_CHANNEL_LIMIT);
|
|
|
|
static int cc1200_attr_get(const struct device *dev, enum ieee802154_attr attr,
|
|
struct ieee802154_attr_value *value)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
return ieee802154_attr_get_channel_page_and_range(
|
|
attr, IEEE802154_ATTR_PHY_CHANNEL_PAGE_NINE_SUN_PREDEFINED,
|
|
&drv_attr.phy_supported_channels, value);
|
|
}
|
|
|
|
/******************
|
|
* Initialization *
|
|
*****************/
|
|
|
|
static int power_on_and_setup(const struct device *dev)
|
|
{
|
|
if (!instruct_sres(dev)) {
|
|
LOG_ERR("Cannot reset");
|
|
return -EIO;
|
|
}
|
|
|
|
if (!rf_install_settings(dev, &cc1200_rf_settings)) {
|
|
return -EIO;
|
|
}
|
|
|
|
if (!write_reg_iocfg3(dev, CC1200_IOCFG3) ||
|
|
!write_reg_iocfg2(dev, CC1200_IOCFG2) ||
|
|
!write_reg_iocfg0(dev, CC1200_IOCFG0)) {
|
|
LOG_ERR("Cannot configure GPIOs");
|
|
return -EIO;
|
|
}
|
|
|
|
if (setup_gpio_callback(dev) != 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
return rf_calibrate(dev);
|
|
}
|
|
|
|
static int cc1200_init(const struct device *dev)
|
|
{
|
|
const struct cc1200_config *config = dev->config;
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
|
|
atomic_set(&cc1200->tx, 0);
|
|
atomic_set(&cc1200->tx_start, 0);
|
|
atomic_set(&cc1200->rx, 0);
|
|
k_sem_init(&cc1200->rx_lock, 0, 1);
|
|
k_sem_init(&cc1200->tx_sync, 0, 1);
|
|
|
|
/* Configure GPIOs */
|
|
if (!gpio_is_ready_dt(&config->interrupt)) {
|
|
LOG_ERR("GPIO port %s is not ready",
|
|
config->interrupt.port->name);
|
|
return -ENODEV;
|
|
}
|
|
gpio_pin_configure_dt(&config->interrupt, GPIO_INPUT);
|
|
|
|
if (!spi_is_ready_dt(&config->bus)) {
|
|
LOG_ERR("SPI bus %s is not ready", config->bus.bus->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
LOG_DBG("GPIO and SPI configured");
|
|
if (power_on_and_setup(dev) != 0) {
|
|
LOG_ERR("Configuring CC1200 failed");
|
|
return -EIO;
|
|
}
|
|
|
|
k_thread_create(&cc1200->rx_thread, cc1200->rx_stack,
|
|
CONFIG_IEEE802154_CC1200_RX_STACK_SIZE,
|
|
cc1200_rx,
|
|
(void *)dev, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT);
|
|
k_thread_name_set(&cc1200->rx_thread, "cc1200_rx");
|
|
|
|
LOG_INF("CC1200 initialized");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cc1200_iface_init(struct net_if *iface)
|
|
{
|
|
const struct device *dev = net_if_get_device(iface);
|
|
struct cc1200_context *cc1200 = dev->data;
|
|
uint8_t *mac = get_mac(dev);
|
|
|
|
LOG_DBG("");
|
|
|
|
net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154);
|
|
|
|
cc1200->iface = iface;
|
|
|
|
ieee802154_init(iface);
|
|
}
|
|
|
|
static const struct cc1200_config cc1200_config = {
|
|
.bus = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0),
|
|
.interrupt = GPIO_DT_SPEC_INST_GET(0, int_gpios)
|
|
};
|
|
|
|
static struct cc1200_context cc1200_context_data;
|
|
|
|
static const struct ieee802154_radio_api cc1200_radio_api = {
|
|
.iface_api.init = cc1200_iface_init,
|
|
|
|
.get_capabilities = cc1200_get_capabilities,
|
|
.cca = cc1200_cca,
|
|
.set_channel = cc1200_set_channel,
|
|
.set_txpower = cc1200_set_txpower,
|
|
.tx = cc1200_tx,
|
|
.start = cc1200_start,
|
|
.stop = cc1200_stop,
|
|
.attr_get = cc1200_attr_get,
|
|
};
|
|
|
|
NET_DEVICE_DT_INST_DEFINE(0, cc1200_init, NULL, &cc1200_context_data,
|
|
&cc1200_config, CONFIG_IEEE802154_CC1200_INIT_PRIO,
|
|
&cc1200_radio_api, IEEE802154_L2,
|
|
NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125);
|