zephyr/drivers/serial/k20UartDrv.c
Andrei Emeltchenko 0f86fd19f2 uart: Rename INTERRUPT_DRIVEN configuration option
Rename UART_HOSTDRV_INTERRUPT_DRIVEN option to
UART_INTERRUPT_DRIVEN removing old definition.

Change-Id: Id48288db42e97a1ecbd809e259f33359d5a7c9d7
Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@intel.com>
2016-02-05 20:13:41 -05:00

409 lines
10 KiB
C

/*
* Copyright (c) 2013-2015 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
DESCRIPTION
This is the UART driver for the Freescale K20 Family of microprocessors.
USAGE
An _K20_UART_t structure is used to describe the UART.
The BSP's _InitHardware() routine initializes all the
values in the uart_init_info structure before calling uart_init().
INCLUDE FILES: drivers/serial/k20_uart.h
*/
/* includes */
#include <nanokernel.h>
#include <nanokernel/cpu.h>
#include <stdint.h>
#include <board.h>
#include <drivers/uart.h>
#include <drivers/k20_uart.h>
#include <drivers/k20_sim.h>
#include <toolchain.h>
#include <sections.h>
/* typedefs */
typedef struct {
uint8_t *baseAddr; /* base address of registers */
uint8_t irq; /* interrupt request level */
uint8_t intPri; /* interrupt priority */
} _k20Uart_t;
/* locals */
static _k20Uart_t __noinit uart[CONFIG_UART_NUM_SYSTEM_PORTS];
/*******************************************************************************
*
* uart_init - initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* RETURNS: N/A
*/
void uart_init(int which, /* UART channel to initialize */
const struct uart_init_info * const init_info
)
{
int oldLevel; /* old interrupt lock level */
K20_SIM_t *sim_p =
(K20_SIM_t *)PERIPH_ADDR_BASE_SIM; /* sys integ. ctl */
C1_t c1; /* UART C1 register value */
C2_t c2; /* UART C2 register value */
uart[which].baseAddr = (uint8_t *)init_info->regs;
uart[which].irq = init_info->irq;
uart[which].intPri = init_info->int_pri;
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
/* disable interrupts */
oldLevel = irq_lock();
/* enable clock to Uart - must be done prior to device access */
_k20SimUartClkEnable(sim_p, which);
_k20UartBaudRateSet(uart_p, init_info->sys_clk_freq, init_info->baud_rate);
/* 1 start bit, 8 data bits, no parity, 1 stop bit */
c1.value = 0;
uart_p->c1 = c1;
/* enable Rx and Tx with interrupts disabled */
c2.value = 0;
c2.field.rxEnable = 1;
c2.field.txEnable = 1;
uart_p->c2 = c2;
/* restore interrupt state */
irq_unlock(oldLevel);
}
/*******************************************************************************
*
* uart_poll_in - poll the device for input.
*
* RETURNS: 0 if a character arrived, -1 if the input buffer if empty.
*/
int uart_poll_in(int which, /* UART channel to select for input */
unsigned char *pChar /* pointer to char */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
if (uart_p->s1.field.rxDataFull == 0)
return (-1);
/* got a character */
*pChar = uart_p->d;
return 0;
}
/*******************************************************************************
*
* uart_poll_out - output a character in polled mode.
*
* Checks if the transmitter is empty. If empty, a character is written to
* the data register.
*
* If the hardware flow control is enabled then the handshake signal CTS has to
* be asserted in order to send a character.
*
* RETURNS: sent character
*/
unsigned char uart_poll_out(
int which, /* UART channel to select for output */
unsigned char outChar /* char to send */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
/* wait for transmitter to ready to accept a character */
while (uart_p->s1.field.txDataEmpty == 0)
;
uart_p->d = outChar;
return outChar;
}
#if CONFIG_UART_INTERRUPT_DRIVEN
/*******************************************************************************
*
* uart_fifo_fill - fill FIFO with data
* RETURNS: number of bytes sent
*/
int uart_fifo_fill(int which, /* UART on which to send */
const uint8_t *txData, /* data to transmit */
int len /* number of bytes to send */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
uint8_t numTx = 0;
while ((len - numTx > 0) && (uart_p->s1.field.txDataEmpty == 1)) {
uart_p->d = txData[numTx++];
}
return numTx;
}
/*******************************************************************************
*
* uart_fifo_read - read data from FIFO
*
* RETURNS: number of bytes read
*/
int uart_fifo_read(int which, /* UART to receive from */
uint8_t *rxData, /* data container */
const int size /* container size */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
uint8_t numRx = 0;
while ((size - numRx > 0) && (uart_p->s1.field.rxDataFull == 0)) {
rxData[numRx++] = uart_p->d;
}
return numRx;
}
/*******************************************************************************
*
* uart_irq_tx_enable - enable TX interrupt
*
* RETURNS: N/A
*/
void uart_irq_tx_enable(int which /* UART to enable Tx
interrupt */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
uart_p->c2.field.txInt_DmaTx_en = 1;
}
/*******************************************************************************
*
* uart_irq_tx_disable - disable TX interrupt in IER
*
* RETURNS: N/A
*/
void uart_irq_tx_disable(
int which /* UART to disable Tx interrupt */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
uart_p->c2.field.txInt_DmaTx_en = 0;
}
/*******************************************************************************
*
* uart_irq_tx_ready - check if Tx IRQ has been raised
*
* RETURNS: 1 if an IRQ is ready, 0 otherwise
*/
int uart_irq_tx_ready(int which /* UART to check */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
return uart_p->s1.field.txDataEmpty;
}
/*******************************************************************************
*
* uart_irq_rx_enable - enable RX interrupt in IER
*
* RETURNS: N/A
*/
void uart_irq_rx_enable(int which /* UART to enable Rx
interrupt */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
uart_p->c2.field.rxFullInt_dmaTx_en = 1;
}
/*******************************************************************************
*
* uart_irq_rx_disable - disable RX interrupt in IER
*
* RETURNS: N/A
*/
void uart_irq_rx_disable(
int which /* UART to disable Rx interrupt */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
uart_p->c2.field.rxFullInt_dmaTx_en = 0;
}
/*******************************************************************************
*
* uart_irq_rx_ready - check if Rx IRQ has been raised
*
* RETURNS: 1 if an IRQ is ready, 0 otherwise
*/
int uart_irq_rx_ready(int which /* UART to check */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
return uart_p->s1.field.rxDataFull;
}
/*******************************************************************************
*
* uart_irq_err_enable - enable error interrupt
*
* RETURNS: N/A
*/
void uart_irq_err_enable(int which)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
C3_t c3 = uart_p->c3;
c3.field.parityErrIntEn = 1;
c3.field.frameErrIntEn = 1;
c3.field.noiseErrIntEn = 1;
c3.field.overrunErrIntEn = 1;
uart_p->c3 = c3;
}
/*******************************************************************************
*
* uart_irq_err_disable - disable error interrupt
*
* RETURNS: N/A
*/
void uart_irq_err_disable(int which /* UART to disable Rx interrupt */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
C3_t c3 = uart_p->c3;
c3.field.parityErrIntEn = 0;
c3.field.frameErrIntEn = 0;
c3.field.noiseErrIntEn = 0;
c3.field.overrunErrIntEn = 0;
uart_p->c3 = c3;
}
/*******************************************************************************
*
* uart_irq_is_pending - check if Tx or Rx IRQ is pending
*
* RETURNS: 1 if a Tx or Rx IRQ is pending, 0 otherwise
*/
int uart_irq_is_pending(int which /* UART to check */
)
{
K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr;
/* Look only at Tx and Rx data interrupt flags */
return ((uart_p->s1.value & (TX_DATA_EMPTY_MASK | RX_DATA_FULL_MASK))
? 1
: 0);
}
/*******************************************************************************
*
* uart_irq_update - update IRQ status
*
* RETURNS: always 1
*/
int uart_irq_update(int which)
{
return 1;
}
/*******************************************************************************
*
* uart_int_connect - connect an ISR to an interrupt line
*
* The kernel configuration allows to setup an interrupt line for a particular
* DUART. This routine installs the ISR of a UART user to the interrupt line
* chosen for the hardware at configuration time.
*
* RETURNS: N/A
*/
void uart_int_connect(int which, /* UART to which to connect */
void (*isr)(void *), /* interrupt handler */
void *arg, /* argument to pass to handler */
void *stub /* ptr to interrupt stub code */
)
{
#if !defined(CONFIG_SW_ISR_TABLE_DYNAMIC)
ARG_UNUSED(isr);
ARG_UNUSED(arg);
ARG_UNUSED(stub);
#else
irq_connect((unsigned int)uart[which].irq,
(unsigned int)uart[which].intPri,
isr,
arg);
#endif
irq_enable((unsigned int)uart[which].irq);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */