Enable single-threading support for the riscv architecture.
Add z_riscv_switch_to_main_no_multithreading function for
supporting single-threading.
The single-threading does not work with enabling PMP_STACK_GUARD.
It is because single-threading does not use context-switching.
But the privileged mode transition that PMP depends on implicitly
presupposes using context-switching. It is a contradiction.
Thus, disable PMP_STACK_GUARD when MULTITHREADING is not enabled.
Signed-off-by: TOKITA Hiroshi <tokita.hiroshi@fujitsu.com>
For RISC-V, the reg property of a cpu node in the devicetree describes
the low level unique ID of each hart. Using devicetree macro's, a list
of all cpus with status "okay" can be generated.
Using devicetree overlays, a hart or multiple harts can be marked as
"disabled", thus excluding them from the list. This allows platforms
that have non-zero indexed SMP capable harts to be functionally mapped
to Zephyr's sequential CPU numbering scheme.
On kernel init, if the application has MP_MAX_NUM_CPUS greater than 1,
generate the list of cpu nodes from the device tree with status "okay"
and map the unique hartid's to zephyr cpu's
While we are at it, as the hartid is the value that gets passed to
z_riscv_secondary_cpu_init, use that as the variable name instead of
cpu_num
Signed-off-by: Conor Paxton <conor.paxton@microchip.com>
FPU context switching is always performed on demand through the FPU
access exception handler. Actual task switching only grants or denies
FPU access depending on the current FPU owner.
Because RISC-V doesn't have a dedicated FPU access exception, we must
catch the Illegal Instruction exception and look for actual FP opcodes.
There is no longer a need to allocate FPU storage on the stack for every
exception making esf smaller and stack overflows less likely.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Instead of saving/restoring FPU content on every exception and task
switch, this replaces FPU sharing support with a "lazy" (on-demand)
context switching algorithm similar to the one used on ARM64.
Every thread starts with FPU access disabled. On the first access the
FPU trap is invoked to:
- flush the FPU content to the previous thread's memory storage;
- restore the current thread's FPU content from memory.
When a thread loads its data in the FPU, it becomes the FPU owner.
FPU content is preserved across task switching, however FPU access is
either allowed if the new thread is the FPU owner, or denied otherwise.
A thread may claim FPU ownership only through the FPU trap. This way,
threads that don't use the FPU won't force an FPU context switch.
If only one running thread uses the FPU, there will be no FPU context
switching to do at all.
It is possible to do FP accesses in ISRs and syscalls. This is not the
norm though, so the same principle is applied here, although exception
contexts may not own the FPU. When they access the FPU, the FPU content
is flushed and the exception context is granted FPU access for the
duration of the exception. Nested IRQs are disallowed in that case to
dispense with the need to save and restore exception's FPU context data.
This is the core implementation only to ease reviewing. It is not yet
hooked into the build.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Given the Zephyr CPU number is no longer tied to the hartid, we must
consider the actual hartid when sending an IPI to a given CPU. Since
those hartids can be anything, let's just save them in the cpu structure
as each CPU is brought online.
While at it, throw in some `get_hart_msip()` cleanups.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Currently it is assumed that Zephyr CPU numbers match their hartid
value one for one. This assumption was relied upon to efficiently
retrieve the current CPU's `struct _cpu` pointer.
People are starting to have systems with a mix of different usage for
each CPU and such assumption may no longer be true.
Let's completely decouple the hartid from the Zephyr CPU number by
stuffing each CPU's `struct _cpu` pointer in their respective scratch
register instead. `arch_curr_cpu()` becomes more efficient as well.
Since the scratch register was previously used to store userspace's
exception stack pointer, that is now moved into `struct _cpu_arch`
which implied minor user space entry code cleanup and rationalization.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Some early RISC-V SoCs have a problem when an `mret` instruction is used
outside a trap handler.
After the latest Zephyr RISC-V huge rework, the arch_switch code is
indeed calling `mret` when not in handler mode, breaking some early
RISC-V platforms.
Optionally restore the old behavior by adding a new
CONFIG_RISCV_ALWAYS_SWITCH_THROUGH_ECALL symbol.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
This reverts the bulk of commit c8bfc2afda ("riscv: make
arch_is_user_context() SMP compatible") and replaces it with a flag
stored in the thread local storage (TLS) area, therefore making TLS
mandatory for userspace support on RISC-V.
This has many advantages:
- The tp (x4) register is already dedicated by the standard for this
purpose, making TLS support almost free.
- This is very efficient, requiring only a single instruction to clear
and 2 instructions to set.
- This makes the SMP case much more efficient. No need for funky
exception code any longer.
- SMP and non-SMP now use the same implementation making maintenance
easier.
- The is_user_mode variable no longer requires a dedicated PMP mapping
and therefore freeing one PMP slot for other purposes.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
5f65dbcc9dab3d39473b05397e05.
In order to bring consistency in-tree, migrate all arch code to the new
prefix <zephyr/...>. Note that the conversion has been scripted, refer
to zephyrproject-rtos#45388 for more details.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
Overall diffstat with the new PMP code in place:
18 files changed, 866 insertions(+), 1372 deletions(-)
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Add the appropriate hooks effectively replacing the old implementation
with the new one.
Also the stackguard wasn't properly enforced especially with the
usermode combination. This is now fixed.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
The idea here is to compute the PMP register set on demand i.e. upon
scheduling in the affected threads, and only if changes occurred.
A simple sequence number is used to stay in sync with the latest update.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Stackguard uses the PMP to prevents many types of stack overflow by
making any access to the bottom stack area raise a CPU exception. Each
thread has its set of precomputed PMP entries and those are written to
PMP registers at context switch time.
This is the code to set it up. It will be connected later.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
This is the core code to manage PMP entries with only the global entries
initialisation for now. It is not yet linked into the build.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
The move to arch_switch() is a prerequisite for SMP support.
Make it optimal without the need for an ECALL roundtrip on every
context switch. Performance numbers from tests/benchmarks/sched:
Before:
unpend 107 ready 102 switch 188 pend 218 tot 615 (avg 615)
After:
unpend 107 ready 102 switch 170 pend 217 tot 596 (avg 595)
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
This is a per-thread register that gets updated only when context
switching. No need to load and save it on every exception entry.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Complete revamp of the exception entry code, including syscall handling.
Proper syscall frame exception trigger. Many correctness fixes, hacks
removal, etc. etc.
I tried to make this into several commits, but this stuff is all
inter-related and a pain to split.
The diffstat summary:
14 files changed, 250 insertions(+), 802 deletions(-)
Binary size (before):
text data bss dec hex filename
1104 0 0 1104 450 isr.S.obj
64 0 0 64 40 userspace.S.obj
Binary size (after):
text data bss dec hex filename
600 0 0 600 258 isr.S.obj
36 0 0 36 24 userspace.S.obj
Run of samples/userspace/syscall_perf (before):
*** Booting Zephyr OS build zephyr-v3.0.0-325-g3748accae018 ***
Main Thread started; qemu_riscv32
Supervisor thread started
User thread started
Supervisor thread(0x80010048): 384 cycles 509 instructions
User thread(0x80010140): 77312 cycles 77437 instructions
Run of samples/userspace/syscall_perf (after):
*** Booting Zephyr OS build zephyr-v3.0.0-326-g4c877a2753b3 ***
Main Thread started; qemu_riscv32
Supervisor thread started
User thread started
Supervisor thread(0x80010048): 384 cycles 509 instructions
User thread(0x80010138): 7040 cycles 7165 instructions
Yes, that's more than a 10x speed-up!
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
This reverts commit be28de692c.
The purpose of this commit will be reintroduced later on top of
a cleaner codebase.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
Enable `arch_switch()` as preparation for SMP support. This patch
doesn't try to keep support for old style context swap - only switch
based swap is supported, to keep things simple.
A fair amount of refactoring was done in this patch, specially regarding
the code that decides what to do about the ISR. In RISC-V, ECALL
instructions are used to signalize several events, such as user space
system calls, forced syscall, IRQ offload, return from syscall and
context switch. All those handled by the ISR - which also handles
interrupts. After refactor, this "dispatching" step is done at the
beginning of ISR (just after saving generic registers).
As with other platforms, the thread object itself is used as the thread
"switch handle" for the context swap.
Signed-off-by: Ederson de Souza <ederson.desouza@intel.com>
This commit enable PMP-based memory protection of code and rodata
instead of relying on non-writable real HW (e.g. flash). Use static
PMP region with PMP Lock bit to protect them in both user/supervisor
mode.
Signed-off-by: Jim Shu <cwshu@andestech.com>
Using struct riscv_pmp_region to modulize PMP CSR handling, including
PMP NAPOT/TOR mode handling. This patch can make us more easily to
add/remove RISC-V PMP regions without considering register handling.
Signed-off-by: Jim Shu <cwshu@andestech.com>
Cleanup logging API in core_pmp.c. Remove old printf-based debugging API
and change the log module of PMP to individual MPU log module.
Signed-off-by: Jim Shu <cwshu@andestech.com>
This changes the arch_mem_domain_*() functions to return errors.
This allows the callers a chance to recover if needed.
Note that:
() For assertions where it can bail out early without side
effects, these are converted to CHECKIF(). (Usually means
that updating of page tables or translation tables has not
been started yet.)
() Other assertions are retained to signal fatal errors during
development.
() The additional CHECKIF() are structured so that it will bail
early if possible. If errors are encountered inside a loop,
it will still continue with the loop so it works as before
this changes with assertions disabled.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
The IRQ handler has had a major changes to manage syscall, reschedule
and interrupt from user thread and stack guard.
Add userspace support:
- Use a global variable to know if the current execution is user or
machine. The location of this variable is read only for all user
thread and read/write for kernel thread.
- Memory shared is supported.
- Use dynamic allocation to optimize PMP slot usage. If the area size
is a power of 2, only one PMP slot is used, else 2 are used.
Add stack guard support:
- Use MPRV bit to force PMP rules to machine mode execution.
- IRQ stack have a locked stack guard to avoid re-write PMP
configuration registers for each interruption and then win some
cycle.
- The IRQ stack is used as "temporary" stack at the beginning of IRQ
handler to save current ESF. That avoid to trigger write fault on
thread stack during store ESF which that call IRQ handler to
infinity.
- A stack guard is also setup for privileged stack of a user thread.
Thread:
- A PMP setup is specific to each thread. PMP setup are saved in each
thread structure to improve reschedule performance.
Signed-off-by: Alexandre Mergnat <amergnat@baylibre.com>
Reviewed-by: Nicolas Royer <nroyer@baylibre.com>
- Set some helper function to write/clear/print PMP config registers.
- Add support for different PMP slot size function to core/board.
Signed-off-by: Alexandre Mergnat <amergnat@baylibre.com>
This commit renames the Kconfig `FP_SHARING` symbol to `FPU_SHARING`,
since this symbol specifically refers to the hardware FPU sharing
support by means of FPU context preservation, and the "FP" prefix is
not fully descriptive of that; leaving room for ambiguity.
Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
This commit renames the Kconfig `FLOAT` symbol to `FPU`, since this
symbol only indicates that the hardware Floating Point Unit (FPU) is
used and does not imply and/or indicate the general availability of
toolchain-level floating point support (i.e. this symbol is not
selected when building for an FPU-less platform that supports floating
point operations through the toolchain-provided software floating point
library).
Moreover, given that the symbol that indicates the availability of FPU
is named `CPU_HAS_FPU`, it only makes sense to use "FPU" in the name of
the symbol that enables the FPU.
Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
This change adds full shared floating point support for the RISCV
architecture with minimal impact on threads with floating point
support not enabled.
Signed-off-by: Corey Wharton <coreyw7@fb.com>
The set of interrupt stacks is now expressed as an array. We
also define the idle threads and their associated stacks this
way. This allows for iteration in cases where we have multiple
CPUs.
There is now a centralized declaration in kernel_internal.h.
On uniprocessor systems, z_interrupt_stacks has one element
and can be used in the same way as _interrupt_stack.
The IRQ stack for CPU 0 is now set in init.c instead of in
arch code.
The extern definition of the main thread stack is now removed,
this doesn't need to be in a header.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Promote the private z_arch_* namespace, which specifies
the interface between the core kernel and the
architecture code, to a new top-level namespace named
arch_*.
This allows our documentation generation to create
online documentation for this set of interfaces,
and this set of interfaces is worth treating in a
more formal way anyway.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This commit refactors kernel and arch headers to establish a boundary
between private and public interface headers.
The refactoring strategy used in this commit is detailed in the issue
This commit introduces the following major changes:
1. Establish a clear boundary between private and public headers by
removing "kernel/include" and "arch/*/include" from the global
include paths. Ideally, only kernel/ and arch/*/ source files should
reference the headers in these directories. If these headers must be
used by a component, these include paths shall be manually added to
the CMakeLists.txt file of the component. This is intended to
discourage applications from including private kernel and arch
headers either knowingly and unknowingly.
- kernel/include/ (PRIVATE)
This directory contains the private headers that provide private
kernel definitions which should not be visible outside the kernel
and arch source code. All public kernel definitions must be added
to an appropriate header located under include/.
- arch/*/include/ (PRIVATE)
This directory contains the private headers that provide private
architecture-specific definitions which should not be visible
outside the arch and kernel source code. All public architecture-
specific definitions must be added to an appropriate header located
under include/arch/*/.
- include/ AND include/sys/ (PUBLIC)
This directory contains the public headers that provide public
kernel definitions which can be referenced by both kernel and
application code.
- include/arch/*/ (PUBLIC)
This directory contains the public headers that provide public
architecture-specific definitions which can be referenced by both
kernel and application code.
2. Split arch_interface.h into "kernel-to-arch interface" and "public
arch interface" divisions.
- kernel/include/kernel_arch_interface.h
* provides private "kernel-to-arch interface" definition.
* includes arch/*/include/kernel_arch_func.h to ensure that the
interface function implementations are always available.
* includes sys/arch_interface.h so that public arch interface
definitions are automatically included when including this file.
- arch/*/include/kernel_arch_func.h
* provides architecture-specific "kernel-to-arch interface"
implementation.
* only the functions that will be used in kernel and arch source
files are defined here.
- include/sys/arch_interface.h
* provides "public arch interface" definition.
* includes include/arch/arch_inlines.h to ensure that the
architecture-specific public inline interface function
implementations are always available.
- include/arch/arch_inlines.h
* includes architecture-specific arch_inlines.h in
include/arch/*/arch_inline.h.
- include/arch/*/arch_inline.h
* provides architecture-specific "public arch interface" inline
function implementation.
* supersedes include/sys/arch_inline.h.
3. Refactor kernel and the existing architecture implementations.
- Remove circular dependency of kernel and arch headers. The
following general rules should be observed:
* Never include any private headers from public headers
* Never include kernel_internal.h in kernel_arch_data.h
* Always include kernel_arch_data.h from kernel_arch_func.h
* Never include kernel.h from kernel_struct.h either directly or
indirectly. Only add the kernel structures that must be referenced
from public arch headers in this file.
- Relocate syscall_handler.h to include/ so it can be used in the
public code. This is necessary because many user-mode public codes
reference the functions defined in this header.
- Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is
necessary to provide architecture-specific thread definition for
'struct k_thread' in kernel.h.
- Remove any private header dependencies from public headers using
the following methods:
* If dependency is not required, simply omit
* If dependency is required,
- Relocate a portion of the required dependencies from the
private header to an appropriate public header OR
- Relocate the required private header to make it public.
This commit supersedes #20047, addresses #19666, and fixes#3056.
Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
This is part of the core kernel -> architecture interface and
has been renamed z_arch_kernel_init().
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
z_set_thread_return_value is part of the core kernel -> arch
interface and has been renamed to z_arch_thread_return_value_set.
z_set_thread_return_value_with_data renamed to
z_thread_return_value_set_with_data for consistency.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
k_cpu_idle() and k_cpu_atomic_idle() were being directly
implemented by arch code.
Rename these implementations to z_arch_cpu_idle() and
z_arch_cpu_atomic_idle(), and call them from new inline
function definitions in kernel.h.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This is part of the core kernel -> architecture interface
and is appropriately renamed z_arch_is_in_isr().
References from test cases changed to k_is_in_isr().
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Consistently place C++ use of extern "C" after all include directives,
within the negative branch of _ASMLANGUAGE if used.
Remove extern "C" support from files that don't declare objects or
functions.
Background from issue #17997:
Declarations that use C linkage should be placed within extern "C"
so the language linkage is correct when the header is included by
a C++ compiler.
Similarly #include directives should be outside the extern "C" to
ensure the language-specific default linkage is applied to any
declarations provided by the included header.
See: https://en.cppreference.com/w/cpp/language/language_linkage
Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
There are two aspects to this: CPU registers are twice as big, and the
load and store instructions must use the 'd' suffix instead of the 'w'
one. To abstract register differences, we simply use a ulong_t instead
of u32_t given that RISC-V is either ILP32 or LP64. And the relevant
lw/sw instructions are replaced by LR/SR (load/store register) that get
defined as either lw/sw or ld/sd. Finally a few constants to deal with
register offsets are also provided.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
With the upcoming riscv64 support, it is best to use "riscv" as the
subdirectory name and common symbols as riscv32 and riscv64 support
code is almost identical. Then later decide whether 32-bit or 64-bit
compilation is wanted.
Redirects for the web documentation are also included.
Then zephyrbot complained about this:
"
New files added that are not covered in CODEOWNERS:
dts/riscv/microsemi-miv.dtsi
dts/riscv/riscv32-fe310.dtsi
Please add one or more entries in the CODEOWNERS file to cover
those files
"
So I assigned them to those who created them. Feel free to readjust
as necessary.
Signed-off-by: Nicolas Pitre <npitre@baylibre.com>